Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(13): 2385-2400.e9, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35594856

RESUMEN

Inflammation observed in SARS-CoV-2-infected patients suggests that inflammasomes, proinflammatory intracellular complexes, regulate various steps of infection. Lung epithelial cells express inflammasome-forming sensors and constitute the primary entry door of SARS-CoV-2. Here, we describe that the NLRP1 inflammasome detects SARS-CoV-2 infection in human lung epithelial cells. Specifically, human NLRP1 is cleaved at the Q333 site by multiple coronavirus 3CL proteases, which triggers inflammasome assembly and cell death and limits the production of infectious viral particles. Analysis of NLRP1-associated pathways unveils that 3CL proteases also inactivate the pyroptosis executioner Gasdermin D (GSDMD). Subsequently, caspase-3 and GSDME promote alternative cell pyroptosis. Finally, analysis of pyroptosis markers in plasma from COVID-19 patients with characterized severe pneumonia due to autoantibodies against, or inborn errors of, type I interferons (IFNs) highlights GSDME/caspase-3 as potential markers of disease severity. Overall, our findings identify NLRP1 as a sensor of SARS-CoV-2 infection in lung epithelia.


Asunto(s)
COVID-19 , Proteasas 3C de Coronavirus , Células Epiteliales , Inflamasomas , Proteínas NLR , SARS-CoV-2 , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Caspasa 3/metabolismo , Proteasas 3C de Coronavirus/genética , Proteasas 3C de Coronavirus/metabolismo , Células Epiteliales/metabolismo , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Pulmón/metabolismo , Pulmón/virología , Proteínas NLR/genética , Proteínas NLR/metabolismo , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Piroptosis , SARS-CoV-2/enzimología , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad
2.
Nature ; 617(7960): 386-394, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100912

RESUMEN

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Asunto(s)
Plasticidad de la Célula , Cobre , Inflamación , Transducción de Señal , Animales , Ratones , Cobre/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , NAD/metabolismo , Transducción de Señal/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Peróxido de Hidrógeno/metabolismo , Epigénesis Genética/efectos de los fármacos , Metformina/análogos & derivados , Oxidación-Reducción , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/genética , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética
3.
Nat Immunol ; 16(5): 476-484, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25774716

RESUMEN

The AIM2 inflammasome detects double-stranded DNA in the cytosol and induces caspase-1-dependent pyroptosis as well as release of the inflammatory cytokines interleukin 1ß (IL-1ß) and IL-18. AIM2 is critical for host defense against DNA viruses and bacteria that replicate in the cytosol, such as Francisella tularensis subspecies novicida (F. novicida). The activation of AIM2 by F. novicida requires bacteriolysis, yet whether this process is accidental or is a host-driven immunological mechanism has remained unclear. By screening nearly 500 interferon-stimulated genes (ISGs) through the use of small interfering RNA (siRNA), we identified guanylate-binding proteins GBP2 and GBP5 as key activators of AIM2 during infection with F. novicida. We confirmed their prominent role in vitro and in a mouse model of tularemia. Mechanistically, these two GBPs targeted cytosolic F. novicida and promoted bacteriolysis. Thus, in addition to their role in host defense against vacuolar pathogens, GBPs also facilitate the presentation of ligands by directly attacking cytosolic bacteria.


Asunto(s)
Bacteriólisis , Proteínas de Unión al ADN/metabolismo , Francisella tularensis/fisiología , Proteínas de Unión al GTP/metabolismo , Inflamasomas/metabolismo , Tularemia/inmunología , Animales , Células Cultivadas , Citosol/microbiología , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Proteínas de Unión al GTP/genética , Humanos , Ratones , Ratones Noqueados , ARN Interferente Pequeño/genética
4.
Semin Immunol ; 70: 101849, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37939552

RESUMEN

Neutrophils are among the most abundant immune cells, representing about 50%- 70% of all circulating leukocytes in humans. Neutrophils rapidly infiltrate inflamed tissues and play an essential role in host defense against infections. They exert microbicidal activity through a variety of specialized effector mechanisms, including phagocytosis, production of reactive oxygen species, degranulation and release of secretory vesicles containing broad-spectrum antimicrobial factors. In addition to their homeostatic turnover by apoptosis, recent studies have revealed the mechanisms by which neutrophils undergo various forms of regulated cell death. In this review, we will discuss the different modes of regulated cell death that have been described in neutrophils, with a particular emphasis on the current understanding of neutrophil pyroptosis and its role in infections and autoinflammation.


Asunto(s)
Neutrófilos , Piroptosis , Humanos , Fagocitosis/fisiología , Apoptosis/fisiología
5.
Proc Natl Acad Sci U S A ; 121(2): e2309579121, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38175865

RESUMEN

Nigericin, an ionophore derived from Streptomyces hygroscopicus, is arguably the most commonly used tool compound to study the NLRP3 inflammasome. Recent findings, however, showed that nigericin also activates the NLRP1 inflammasome in human keratinocytes. In this study, we resolve the mechanistic basis of nigericin-driven NLRP1 inflammasome activation. In multiple nonhematopoietic cell types, nigericin rapidly and specifically inhibits the elongation stage of the ribosome cycle by depleting cytosolic potassium ions. This activates the ribotoxic stress response (RSR) sensor kinase ZAKα, p38, and JNK, as well as the hyperphosphorylation of the NLRP1 linker domain. As a result, nigericin-induced pyroptosis in human keratinocytes is blocked by extracellular potassium supplementation, ZAKα knockout, or pharmacologic inhibitors of ZAKα and p38 kinase activities. By surveying a panel of ionophores, we show that electroneutrality of ion movement is essential to activate ZAKα-driven RSR and a greater extent of K+ depletion is necessary to activate ZAKα-NLRP1 than NLRP3. These findings resolve the mechanism by which nigericin activates NLRP1 in nonhematopoietic cell types and demonstrate an unexpected connection between RSR, perturbations of potassium ion flux, and innate immunity.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Nigericina/farmacología , Potasio/metabolismo , Inmunidad Innata , Ionóforos , Proteínas NLR
6.
PLoS Pathog ; 19(8): e1011559, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37619220

RESUMEN

Mycobacterium abscessus (Mabs) drives life-shortening mortality in cystic fibrosis (CF) patients, primarily because of its resistance to chemotherapeutic agents. To date, our knowledge on the host and bacterial determinants driving Mabs pathology in CF patient lung remains rudimentary. Here, we used human airway organoids (AOs) microinjected with smooth (S) or rough (R-)Mabs to evaluate bacteria fitness, host responses to infection, and new treatment efficacy. We show that S Mabs formed biofilm, and R Mabs formed cord serpentines and displayed a higher virulence. While Mabs infection triggers enhanced oxidative stress, pharmacological activation of antioxidant pathways resulted in better control of Mabs growth and reduced virulence. Genetic and pharmacological inhibition of the CFTR is associated with better growth and higher virulence of S and R Mabs. Finally, pharmacological activation of antioxidant pathways inhibited Mabs growth, at least in part through the quinone oxidoreductase NQO1, and improved efficacy in combination with cefoxitin, a first line antibiotic. In conclusion, we have established AOs as a suitable human system to decipher mechanisms of CF-driven respiratory infection by Mabs and propose boosting of the NRF2-NQO1 axis as a potential host-directed strategy to improve Mabs infection control.


Asunto(s)
Fibrosis Quística , Mycobacterium abscessus , Humanos , Fibrosis Quística/tratamiento farmacológico , Antioxidantes , Oxidación-Reducción , Estrés Oxidativo
7.
PLoS Pathog ; 18(7): e1010305, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35849616

RESUMEN

Multiple regulated neutrophil cell death programs contribute to host defense against infections. However, despite expressing all necessary inflammasome components, neutrophils are thought to be generally defective in Caspase-1-dependent pyroptosis. By screening different bacterial species, we found that several Pseudomonas aeruginosa (P. aeruginosa) strains trigger Caspase-1-dependent pyroptosis in human and murine neutrophils. Notably, deletion of Exotoxins U or S in P. aeruginosa enhanced neutrophil death to Caspase-1-dependent pyroptosis, suggesting that these exotoxins interfere with this pathway. Mechanistically, P. aeruginosa Flagellin activates the NLRC4 inflammasome, which supports Caspase-1-driven interleukin (IL)-1ß secretion and Gasdermin D (GSDMD)-dependent neutrophil pyroptosis. Furthermore, P. aeruginosa-induced GSDMD activation triggers Calcium-dependent and Peptidyl Arginine Deaminase-4-driven histone citrullination and translocation of neutrophil DNA into the cell cytosol without inducing extracellular Neutrophil Extracellular Traps. Finally, we show that neutrophil Caspase-1 contributes to IL-1ß production and susceptibility to pyroptosis-inducing P. aeruginosa strains in vivo. Overall, we demonstrate that neutrophils are not universally resistant for Caspase-1-dependent pyroptosis.


Asunto(s)
Inflamasomas , Piroptosis , Animales , Proteínas Reguladoras de la Apoptosis/genética , Caspasa 1/metabolismo , Exotoxinas/metabolismo , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/microbiología , Pseudomonas aeruginosa/metabolismo
8.
EMBO Rep ; 23(10): e54277, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35899491

RESUMEN

Neutrophils are the most prevalent immune cells in circulation, but the repertoire of canonical inflammasomes in neutrophils and their respective involvement in neutrophil IL-1ß secretion and neutrophil cell death remain unclear. Here, we show that neutrophil-targeted expression of the disease-associated gain-of-function Nlrp3A350V mutant suffices for systemic autoinflammatory disease and tissue pathology in vivo. We confirm the activity of the canonical NLRP3 and NLRC4 inflammasomes in neutrophils, and further show that the NLRP1b, Pyrin and AIM2 inflammasomes also promote maturation and secretion of interleukin (IL)-1ß in cultured bone marrow neutrophils. Notably, all tested canonical inflammasomes promote GSDMD cleavage in neutrophils, and canonical inflammasome-induced pyroptosis and secretion of mature IL-1ß are blunted in GSDMD-knockout neutrophils. In contrast, GSDMD is dispensable for PMA-induced NETosis. We also show that Salmonella Typhimurium-induced pyroptosis is markedly increased in Nox2/Gp91Phox -deficient neutrophils that lack NADPH oxidase activity and are defective in PMA-induced NETosis. In conclusion, we establish the canonical inflammasome repertoire in neutrophils and identify differential roles for GSDMD and the NADPH complex in canonical inflammasome-induced neutrophil pyroptosis and mitogen-induced NETosis, respectively.


Asunto(s)
Trampas Extracelulares , Inflamasomas , Neutrófilos , Proteínas de Unión a Fosfato , Proteínas Citotóxicas Formadoras de Poros , Piroptosis , Animales , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitógenos/metabolismo , NADP/metabolismo , NADPH Oxidasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Neutrófilos/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Pirina/metabolismo
9.
Mol Microbiol ; 117(3): 682-692, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34605588

RESUMEN

Respiratory infections remain a major global health concern. Tuberculosis is one of the top 10 causes of death worldwide, while infections with Non-Tuberculous Mycobacteria are rising globally. Recent advances in human tissue modeling offer a unique opportunity to grow different human "organs" in vitro, including the human airway, that faithfully recapitulates lung architecture and function. Here, we have explored the potential of human airway organoids (AOs) as a novel system in which to assess the very early steps of mycobacterial infection. We reveal that Mycobacterium tuberculosis (Mtb) and Mycobacterium abscessus (Mabs) mainly reside as extracellular bacteria and infect epithelial cells with very low efficiency. While the AO microenvironment was able to control, but not eliminate Mtb, Mabs thrives. We demonstrate that AOs responded to infection by modulating cytokine, antimicrobial peptide, and mucin gene expression. Given the importance of myeloid cells in mycobacterial infection, we co-cultured infected AOs with human monocyte-derived macrophages and found that these cells interact with the organoid epithelium. We conclude that adult stem cell (ASC)-derived AOs can be used to decipher very early events of mycobacteria infection in human settings thus offering new avenues for fundamental and therapeutic research.


Asunto(s)
Mycobacterium abscessus , Mycobacterium tuberculosis , Tuberculosis , Humanos , Macrófagos/microbiología , Micobacterias no Tuberculosas , Organoides , Tuberculosis/microbiología
10.
PLoS Pathog ; 17(9): e1009927, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34516571

RESUMEN

Regulated cell necrosis supports immune and anti-infectious strategies of the body; however, dysregulation of these processes drives pathological organ damage. Pseudomonas aeruginosa expresses a phospholipase, ExoU that triggers pathological host cell necrosis through a poorly characterized pathway. Here, we investigated the molecular and cellular mechanisms of ExoU-mediated necrosis. We show that cellular peroxidised phospholipids enhance ExoU phospholipase activity, which drives necrosis of immune and non-immune cells. Conversely, both the endogenous lipid peroxidation regulator GPX4 and the pharmacological inhibition of lipid peroxidation delay ExoU-dependent cell necrosis and improve bacterial elimination in vitro and in vivo. Our findings also pertain to the ExoU-related phospholipase from the bacterial pathogen Burkholderia thailandensis, suggesting that exploitation of peroxidised phospholipids might be a conserved virulence mechanism among various microbial phospholipases. Overall, our results identify an original lipid peroxidation-based virulence mechanism as a strong contributor of microbial phospholipase-driven pathology.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Peroxidación de Lípido/fisiología , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/patogenicidad , Animales , Humanos , Ratones , Ratones Noqueados , Necrosis/metabolismo , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/metabolismo , Virulencia/fisiología
11.
AIDS Behav ; 27(3): 761-771, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35930201

RESUMEN

Sexual and gender minority individuals who attend collective sex venues (CSVs; establishments where people can have sex in groups or the presence of others) are at elevated risk for HIV and STIs. On-site sexual health interventions have been attempted at CSVs, but attendees' interest in receiving such services is under-investigated. This paper presents results from a 2020 online cross-sectional survey completed by 342 sexual and gender minority individuals who attended CSVs in New York City. Interest in services such as on-site testing for STIs, testing vans near CSVs, and informational referrals was overall high, particularly among younger participants. Among participants who reported being HIV negative, those of younger age and those who were not using PrEP reported being more likely to take an HIV test if it would be offered at CSVs. In open-text survey responses, participants expressed interest in CSVs providing free prevention services such as HIV/STI testing, PEP, PrEP, and STI medications or vaccination, as well as in ways to improve norms surrounding condom use and consent at these venues. Some participants expressed barriers to on-site services such as privacy concerns, preexisting access to health services, an emphasis on personal responsibility, and negative reactions to the presence of service providers. However, some participants also felt that these services could be delivered in a positive, acceptable, and non-judgmental way, especially by involving CSV organizers and attendees in their implementation. Findings from this study can inform future initiatives to develop sexual health interventions at CSVs.


Asunto(s)
Infecciones por VIH , Minorías Sexuales y de Género , Enfermedades de Transmisión Sexual , Humanos , Masculino , Infecciones por VIH/prevención & control , Ciudad de Nueva York , Estudios Transversales , Conducta Sexual , Homosexualidad Masculina
12.
EMBO J ; 37(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29459437

RESUMEN

Pathogenic and commensal Gram-negative bacteria produce and release outer membrane vesicles (OMVs), which present several surface antigens and play an important role for bacterial pathogenesis. OMVs also modulate the host immune system, which makes them attractive as vaccine candidates. At the cellular level, OMVs are internalized by macrophages and deliver lipopolysaccharide (LPS) into the host cytosol, thus activating the caspase-11 non-canonical inflammasome. Here, we show that OMV-induced inflammasome activation requires TLR4-TRIF signaling, the production of type I interferons, and the action of guanylate-binding proteins (GBPs), both in macrophages and in vivo Mechanistically, we find that isoprenylated GBPs associate with the surface of OMVs or with transfected LPS, indicating that the key factor that determines GBP recruitment to the Gram-negative bacterial outer membranes is LPS itself. Our findings provide new insights into the mechanism by which GBPs target foreign surfaces and reveal a novel function for GBPs in controlling the intracellular detection of LPS derived from extracellular bacteria in the form of OMVs, thus extending their function as a hub between cell-autonomous immunity and innate immunity.


Asunto(s)
Bacterias/inmunología , Membrana Celular/inmunología , Proteínas de Unión al GTP/inmunología , Inflamasomas/inmunología , Lipopolisacáridos/inmunología , Animales , Proteínas de Unión al GTP/genética , Ratones Endogámicos C57BL , Ratones Noqueados
13.
Immunity ; 38(5): 1038-49, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23684988

RESUMEN

Macrophages act as the primary effector cells during Leishmania infection through production of reactive oxygen species (ROS) and interleukin-1ß (IL-1ß). However, how macrophage-killing mechanisms are activated during Leishmania-macrophage interactions is poorly understood. Here, we report that the macrophage response against Leishmania infantum in vivo is characterized by an M2b-like phenotype and C-type lectin receptors (CLRs) signature composed of Dectin-1, mannose receptor (MR), and the DC-SIGN homolog SIGNR3 expression. Dectin-1 and MR were crucial for the microbicidal response as indicated by the fact that they activated Syk-p47phox and arachidonic acid (AA)-NADPH oxidase signaling pathways, respectively, needed for ROS production and also triggered Syk-coupled signaling for caspase-1-induced IL-1ß secretion. In contrast, SIGNR3 has divergent functions during Leishmania infantum pathogenesis; this CLR favored parasite resilience through inhibition of the LTB4-IL-1ß axis. These pathways also operated during infection of primary human macrophages. Therefore, our study promotes CLRs as potential targets for treatment, diagnosis, and prevention of visceral leishmaniasis.


Asunto(s)
Antígenos CD/metabolismo , Lectinas Tipo C/metabolismo , Leishmania infantum/inmunología , Macrófagos/inmunología , Lectinas de Unión a Manosa/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Ácido Araquidónico/metabolismo , Caspasa 1/metabolismo , Células Cultivadas , Humanos , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lectinas Tipo C/inmunología , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Leucotrieno B4/antagonistas & inhibidores , Receptor de Manosa , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADPH Oxidasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Quinasa Syk
14.
EMBO Rep ; 21(11): e50829, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33124769

RESUMEN

Inflammatory caspase-11 (rodent) and caspases-4/5 (humans) detect the Gram-negative bacterial component LPS within the host cell cytosol, promoting activation of the non-canonical inflammasome. Although non-canonical inflammasome-induced pyroptosis and IL-1-related cytokine release are crucial to mount an efficient immune response against various bacteria, their unrestrained activation drives sepsis. This suggests that cellular components tightly control the threshold level of the non-canonical inflammasome in order to ensure efficient but non-deleterious inflammatory responses. Here, we show that the IFN-inducible protein Irgm2 and the ATG8 family member Gate-16 cooperatively counteract Gram-negative bacteria-induced non-canonical inflammasome activation, both in cultured macrophages and in vivo. Specifically, the Irgm2/Gate-16 axis dampens caspase-11 targeting to intracellular bacteria, which lowers caspase-11-mediated pyroptosis and cytokine release. Deficiency in Irgm2 or Gate16 induces both guanylate binding protein (GBP)-dependent and GBP-independent routes for caspase-11 targeting to intracellular bacteria. Our findings identify molecular effectors that fine-tune bacteria-activated non-canonical inflammasome responses and shed light on the understanding of the immune pathways they control.


Asunto(s)
Caspasas , Lipopolisacáridos , Familia de las Proteínas 8 Relacionadas con la Autofagia , Caspasas/genética , Caspasas Iniciadoras , Bacterias Gramnegativas , Inflamasomas/genética , Macrófagos
15.
AIDS Behav ; 26(5): 1572-1586, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34705151

RESUMEN

Though barriers to HIV pre-exposure prophylaxis (PrEP) uptake among gay, bisexual, and other men who have sex with men (MSM) have received substantial research attention, less is known about what factors may be affecting PrEP uptake among male sex workers (MSWs), a population at high risk of HIV. This paper presents qualitative findings regarding why a subsample of MSM engaged in exchange sex (receiving money, drugs, shelter, or other goods in exchange for sex) with partners they met on dating/hookup websites and apps had never used PrEP. Analysis revealed several barriers to PrEP uptake including lack of awareness and knowledge about PrEP, scientific and medical concerns, issues related to individual risk perception and beliefs/preferences about risk management, practical and logistical barriers, and provider-level barriers. Nuances to these barriers are discussed, particularly as they relate to the specific type of sex work participants were engaged in. Implications for interventions are also discussed.


Asunto(s)
Infecciones por VIH , Profilaxis Pre-Exposición , Trabajadores Sexuales , Minorías Sexuales y de Género , Infecciones por VIH/epidemiología , Homosexualidad Masculina , Humanos , Masculino
16.
Arch Sex Behav ; 51(5): 2711-2730, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35676566

RESUMEN

Technological advances like the Internet and Internet-enabled devices, such as smartphones, and the dating and hookup websites and apps available to the users of them, have transformed the nature, organization, and practice of sex work in fundamental ways. Some scholars have argued that these changes have contributed to a normalization of male exchange sex (i.e., providing sex in exchange for money, drugs, shelter, or goods), and in so doing, have diminished the stigma historically associated with it. However, little empirical research has focused on how male sex workers (MSWs), including those engaged in what might be called informal or incidental or casual sex work and primarily use dating/hookup websites and apps not designed for commercial to meet clients experience and manage stigma. To help fill this gap, we analyzed interview data from 180 MSWs who engaged in exchange sex and met their client on dating/hookup websites and apps. Most participants felt that sex work was still highly stigmatized in society at large, but many also felt it was generally accepted-if not completely normalized-within the gay community. Nevertheless, many struggled with the emotional impact of engaging in a stigmatized practice and most employed one or more of the following stigma management strategies: information management, distancing, discrediting the discreditors, asserting no other option existed, and challenging or reframing stereotypes and narratives. These findings indicate that MSWs, even those engaged in informal or incidental sex work, who meet clients on dating/hookup websites and apps are still strongly affected by sex work-related stigma and seek to manage it in various ways. Future research should investigate the sources of internalized stigma among this under-studied population of sex workers.


Asunto(s)
Trabajadores Sexuales , Homosexualidad Masculina/psicología , Humanos , Masculino , Trabajo Sexual , Teléfono Inteligente , Estigma Social
17.
Qual Health Res ; 32(7): 1167-1184, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35584703

RESUMEN

Collective sex venues such as sex clubs are strategic sites to promote sexual health among sexual and gender minority individuals. We present qualitative findings from a multiple-method study on the acceptability of sexual-health services at collective sex venues in New York City (NYC) among attendees who identified as men, transgender, or gender non-conforming. In a survey used for sample selection (n = 342), most respondents (82.7%) agreed that "having outreach workers at sex venues is a good thing." Interviewees (n = 30) appreciated how on-site services could promote sexual health in their community. They felt peer workers should be familiar with collective sex venues and share demographic characteristics with attendees. Some participants felt workers should keep some boundaries from attendees, while others felt they could be fully integrated in the environment, suggesting that either peer outreach or popular-opinion leader types of interventions could be feasible.


Asunto(s)
Infecciones por VIH , Minorías Sexuales y de Género , Infecciones por VIH/prevención & control , Servicios de Salud , Homosexualidad Masculina , Humanos , Masculino , Ciudad de Nueva York , Conducta Sexual
18.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362409

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic continues to cause significant morbidity and mortality worldwide. Since a large portion of the world's population is currently unvaccinated or incompletely vaccinated and has limited access to approved treatments against COVID-19, there is an urgent need to continue research on treatment options, especially those at low cost and which are immediately available to patients, particularly in low- and middle-income countries. Prior in vitro and observational studies have shown that fluoxetine, possibly through its inhibitory effect on the acid sphingomyelinase/ceramide system, could be a promising antiviral and anti-inflammatory treatment against COVID-19. In this report, we evaluated the potential antiviral and anti-inflammatory activities of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and against variants of concern in vitro, i.e., SARS-CoV-2 ancestral strain, Alpha B.1.1.7, Gamma P1, Delta B1.617 and Omicron BA.5. Fluoxetine, administrated after SARS-CoV-2 infection, significantly reduced lung tissue viral titres and expression of several inflammatory markers (i.e., IL-6, TNFα, CCL2 and CXCL10). It also inhibited the replication of all variants of concern in vitro. A modulation of the ceramide system in the lung tissues, as reflected by the increase in the ratio HexCer 16:0/Cer 16:0 in fluoxetine-treated mice, may contribute to explain these effects. Our findings demonstrate the antiviral and anti-inflammatory properties of fluoxetine in a K18-hACE2 mouse model of SARS-CoV-2 infection, and its in vitro antiviral activity against variants of concern, establishing fluoxetine as a very promising candidate for the prevention and treatment of SARS-CoV-2 infection and disease pathogenesis.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Ceramidas , Modelos Animales de Enfermedad , Fluoxetina/farmacología , Fluoxetina/uso terapéutico
19.
Gut ; 70(6): 1078-1087, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33020209

RESUMEN

OBJECTIVE: The enteric nervous system (ENS) plays a key role in controlling the gut-brain axis under normal and pathological conditions, such as type 2 diabetes. The discovery of intestinal actors, such as enterosynes, able to modulate the ENS-induced duodenal contraction is considered an innovative approach. Among all the intestinal factors, the understanding of the role of gut microbes in controlling glycaemia is still developed. We studied whether the modulation of gut microbiota by prebiotics could permit the identification of novel enterosynes. DESIGN: We measured the effects of prebiotics on the production of bioactive lipids in the intestine and tested the identified lipid on ENS-induced contraction and glucose metabolism. Then, we studied the signalling pathways involved and compared the results obtained in mice to human. RESULTS: We found that modulating the gut microbiota with prebiotics modifies the actions of enteric neurons, thereby controlling duodenal contraction and subsequently attenuating hyperglycaemia in diabetic mice. We discovered that the signalling pathway involved in these effects depends on the synthesis of a bioactive lipid 12-hydroxyeicosatetraenoic acid (12-HETE) and the presence of mu-opioid receptors (MOR) on enteric neurons. Using pharmacological approaches, we demonstrated the key role of the MOR receptors and proliferator-activated receptor γ for the effects of 12-HETE. These findings are supported by human data showing a decreased expression of the proenkephalin and MOR messanger RNAs in the duodenum of patients with diabetic. CONCLUSIONS: Using a prebiotic approach, we identified enkephalin and 12-HETE as new enterosynes with potential real beneficial and safety impact in diabetic human.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/biosíntesis , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Duodeno/fisiología , Sistema Nervioso Entérico/fisiología , Prebióticos , Receptores Opioides mu/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacología , Adulto , Anciano , Animales , Eje Cerebro-Intestino , Diabetes Mellitus Experimental/fisiopatología , Duodeno/inervación , Encefalinas/genética , Encefalinas/metabolismo , Sistema Nervioso Entérico/efectos de los fármacos , Microbioma Gastrointestinal , Prueba de Tolerancia a la Glucosa , Humanos , Contracción Isotónica/efectos de los fármacos , Masculino , Ratones , Persona de Mediana Edad , Músculo Liso/fisiología , Neuronas/fisiología , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Oligosacáridos/farmacología , PPAR gamma/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , ARN Mensajero/metabolismo , Receptores Opioides mu/genética , Transducción de Señal
20.
Sex Transm Infect ; 97(2): 93-98, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32591488

RESUMEN

OBJECTIVES: Recommendations of 'social distancing' and home quarantines to combat the global COVID-19 pandemic have implications for sex and intimacy, including sex work. This study examined the effects of COVID-19 on male sex work globally and investigated how men who sold sex responded to and engaged with the virus in the context of work. METHODS: This study made use of an existing database of deidentified data extracted from the online profiles maintained by male sex workers on a large, international website. Website engagement metrics were calculated for the periods before (September to December 2019) and during COVID-19 (January to May 2020); Poisson regression analyses were used to assess changes over time before and after, while a content analysis was undertaken to identify modes of engagement with the virus. RESULTS: Data were collected from 78 399 profiles representing 19 388 individuals. In the 'before' period, the number of active profiles was stable (inter-rate ratio (IRR)=1.01, 95% CI 0.99 to 1.01, p=0.339) but during COVID-19 decreased by 26.3% (IRR=0.90, 95% CI 0.89 to 0.91, p<0.001). Newly created profiles also decreased during COVID-19 (59.4%; IRR=0.71, 95% CI 0.69 to 0.74, p<0.001) after a period of stability. In total, 211 unique profiles explicitly referenced COVID-19; 185 (85.8%) evoked risk reduction strategies, including discontinuation of in-person services (41.2%), pivoting to virtual services (38.9%), COVID-19 status disclosure (20.9%), enhanced sanitary and screening requirements (12.3%) and restricted travel (5.2%). Some profiles, however, seemed to downplay the seriousness of COVID-19 or resist protective measures (14.7%). CONCLUSIONS: These findings support the contention that COVID-19 has dramatically impacted the sex industry; globally, male sex workers may be facing considerable economic strain. Targeted education and outreach are needed to support male sex workers grappling with COVID-19, including around the most effective risk reduction strategies. Those involved with the sex industry must have access to state-sponsored COVID-19 financial and other aid programmes to support individual and public health.


Asunto(s)
COVID-19 , Control de Enfermedades Transmisibles , Internet , Trabajo Sexual/estadística & datos numéricos , Trabajadores Sexuales/estadística & datos numéricos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Revelación , Humanos , Internacionalidad , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Distanciamiento Físico , SARS-CoV-2 , Conducta Sexual , Teléfono , Viaje , Comunicación por Videoconferencia , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA