Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Microbiol ; 121(3): 529-542, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38131156

RESUMEN

An essential process in transmission of the malaria parasite to the Anopheles vector is the conversion of mature gametocytes into gametes within the mosquito gut, where they egress from the red blood cell (RBC). During egress, male gametocytes undergo exflagellation, leading to the formation of eight haploid motile microgametes, while female gametes retain their spherical shape. Gametocyte egress depends on sequential disruption of the parasitophorous vacuole membrane and the host cell membrane. In other life cycle stages of the malaria parasite, phospholipases have been implicated in membrane disruption processes during egress, however their importance for gametocyte egress is relatively unknown. Here, we performed comprehensive functional analyses of six putative phospholipases for their role during development and egress of Plasmodium falciparum gametocytes. We localize two of them, the prodrug activation and resistance esterase (PF3D7_0709700) and the lysophospholipase 1 (PF3D7_1476700), to the parasite plasma membrane. Subsequently, we show that disruption of most of the studied phospholipase genes does neither affect gametocyte development nor egress. The exception is the putative patatin-like phospholipase 3 (PF3D7_0924000), whose gene deletion leads to a delay in male gametocyte exflagellation, indicating an important, albeit not essential, role of this enzyme in male gametogenesis.


Asunto(s)
Malaria , Plasmodium falciparum , Animales , Masculino , Femenino , Fosfolipasas/genética , Mosquitos Vectores , Eritrocitos/parasitología
2.
Artículo en Inglés | MEDLINE | ID: mdl-38626354

RESUMEN

RATIONALE: Immune checkpoint inhibitor-related pneumonitis is a serious autoimmune event affecting up to 20% of patients with non-small cell lung cancer, yet the factors underpinning its development in some patients and not others are poorly understood. OBJECTIVES: To investigate the role of autoantibodies and autoreactive T cells against surfactant-related proteins in the development of pneumonitis. METHODS: The study cohort consisted of non-small cell lung cancer patients who gave blood samples before and during immune checkpoint inhibitor treatment. Serum was used for proteomics analyses and to detect autoantibodies present during pneumonitis. T cell stimulation assays and single-cell RNA sequencing were performed to investigate the specificity and functionality of peripheral autoreactive T cells. The findings were confirmed in a validation cohort comprising patients with non-small cell lung cancer and patients with melanoma. MEASUREMENTS AND MAIN RESULTS: Across both cohorts, patients who developed pneumonitis had higher pre-treatment levels of immunoglobulin G autoantibodies targeting surfactant protein-B. At the onset of pneumonitis, these patients also exhibited higher frequencies of CD4+ interferon-gamma-positive surfactant protein B-specific T cells, and expanding T cell clonotypes recognizing this protein, accompanied by a pro-inflammatory serum proteomic profile. CONCLUSIONS: Our data suggest that the co-occurrence of surfactant protein-B-specific immunoglobulin G autoantibodies and CD4+ T cells is associated with the development of pneumonitis during ICI therapy. Pre-treatment levels of these antibodies may represent a potential biomarker for elevated risk of developing pneumonitis and on-treatment levels may provide a diagnostic aid. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

3.
Vox Sang ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38889998

RESUMEN

BACKGROUND AND OBJECTIVES: Haemovigilance (HV) systems aim to improve transfusion outcomes in patients and donor safety. An important question for blood regulators is how to ensure an effective HV system. MATERIALS AND METHODS: We retrospectively analysed the HV reports submitted to Paul-Ehrlich-Institut over the last two decades. RESULTS: Between 2011 and 2020, 50.86 million units of blood components were used, and 8931 suspected serious donor and recipient adverse reactions (SARs), 874 serious adverse events (SAEs) and 12,073 donor look-backs were reported. Following implementation of specific risk-minimization measures (RMMs) between 2000 and 2010, SAR reporting rates decreased for transfusion-transmitted viral infections (TTVIs), transfusion-related acute lung injury (TRALI) and transfusion-transmitted bacterial infections (TTBIs), while increasing for other serious adverse transfusion reactions. Within this decade, the overall blood component use decreased. CONCLUSION: Long-term data collection forms the basis to establish trends and changes in reporting and to evaluate the effect of RMM. Standardized criteria for reaction types, seriousness and imputability assessments and availability of a denominator are important elements. Central data collection and independent assessment allow for monitoring HV data in a nationwide context over time. Stakeholder involvement and transparent feedback on the benefit of RMM will help to achieve the objectives of HV.

4.
Mol Syst Biol ; 17(7): e10253, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34292675

RESUMEN

First-principle metabolic modelling holds potential for designing microbial chassis that are resilient against phenotype reversal due to adaptive mutations. Yet, the theory of model-based chassis design has rarely been put to rigorous experimental test. Here, we report the development of Saccharomyces cerevisiae chassis strains for dicarboxylic acid production using genome-scale metabolic modelling. The chassis strains, albeit geared for higher flux towards succinate, fumarate and malate, do not appreciably secrete these metabolites. As predicted by the model, introducing product-specific TCA cycle disruptions resulted in the secretion of the corresponding acid. Adaptive laboratory evolution further improved production of succinate and fumarate, demonstrating the evolutionary robustness of the engineered cells. In the case of malate, multi-omics analysis revealed a flux bypass at peroxisomal malate dehydrogenase that was missing in the yeast metabolic model. In all three cases, flux balance analysis integrating transcriptomics, proteomics and metabolomics data confirmed the flux re-routing predicted by the model. Taken together, our modelling and experimental results have implications for the computer-aided design of microbial cell factories.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Ciclo del Ácido Cítrico/genética , Metabolómica , Saccharomyces cerevisiae/genética , Ácido Succínico
5.
Nucleic Acids Res ; 48(3): 1435-1450, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863583

RESUMEN

tRNAs from all domains of life contain modified nucleotides. However, even for the experimentally most thoroughly characterized model organism Escherichia coli not all tRNA modification enzymes are known. In particular, no enzyme has been found yet for introducing the acp3U modification at position 47 in the variable loop of eight E. coli tRNAs. Here we identify the so far functionally uncharacterized YfiP protein as the SAM-dependent 3-amino-3-carboxypropyl transferase catalyzing this modification and thereby extend the list of known tRNA modification enzymes in E. coli. Similar to the Tsr3 enzymes that introduce acp modifications at U or m1Ψ nucleotides in rRNAs this protein contains a DTW domain suggesting that acp transfer reactions to RNA nucleotides are a general function of DTW domain containing proteins. The introduction of the acp3U-47 modification in E. coli tRNAs is promoted by the presence of the m7G-46 modification as well as by growth in rich medium. However, a deletion of the enzymes responsible for the modifications at position 46 and 47 in the variable loop of E. coli tRNAs did not lead to a clearly discernible phenotype suggesting that these two modifications play only a minor role in ensuring the proper function of tRNAs in E. coli.


Asunto(s)
Transferasas Alquil y Aril/genética , Proteínas Bacterianas/genética , ARN de Transferencia/genética , Transferasas Alquil y Aril/química , Proteínas Bacterianas/química , Escherichia coli/enzimología , Escherichia coli/genética , Conformación de Ácido Nucleico , Nucleótidos , Saccharomyces cerevisiae/enzimología
6.
Mol Biol Evol ; 37(8): 2287-2299, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32227215

RESUMEN

Parasites are arguably among the strongest drivers of natural selection, constraining hosts to evolve resistance and tolerance mechanisms. Although, the genetic basis of adaptation to parasite infection has been widely studied, little is known about how epigenetic changes contribute to parasite resistance and eventually, adaptation. Here, we investigated the role of host DNA methylation modifications to respond to parasite infections. In a controlled infection experiment, we used the three-spined stickleback fish, a model species for host-parasite studies, and their nematode parasite Camallanus lacustris. We showed that the levels of DNA methylation are higher in infected fish. Results furthermore suggest correlations between DNA methylation and shifts in key fitness and immune traits between infected and control fish, including respiratory burst and functional trans-generational traits such as the concentration of motile sperm. We revealed that genes associated with metabolic, developmental, and regulatory processes (cell death and apoptosis) were differentially methylated between infected and control fish. Interestingly, genes such as the neuropeptide FF receptor 2 and the integrin alpha 1 as well as molecular pathways including the Th1 and Th2 cell differentiation were hypermethylated in infected fish, suggesting parasite-mediated repression mechanisms of immune responses. Altogether, we demonstrate that parasite infection contributes to genome-wide DNA methylation modifications. Our study brings novel insights into the evolution of vertebrate immunity and suggests that epigenetic mechanisms are complementary to genetic responses against parasite-mediated selection.


Asunto(s)
Camallanina/fisiología , Metilación de ADN , Interacciones Huésped-Patógeno , Carga de Parásitos , Smegmamorpha/parasitología , Animales , Aptitud Genética , Genoma , Masculino , Fenotipo , Smegmamorpha/genética
7.
Mol Ecol ; 30(15): 3641-3644, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34228848

RESUMEN

Populations are under strong selection to match reproductive timing with favourable environmental conditions. This becomes particularly important and challenging with increasing interannual environmental variability. Adjusting reproductive timing requires the ability to sense and interpret relevant environmental cues, while responding flexibly to their interannual variation. For instance, in seasonal species, reproductive timing is often dependent on photoperiod and temperature. Although many genes influencing the timing of reproduction have been identified, far less attention has been paid to the gene-regulatory cascades orchestrating these complex gene-environment interactions. In a From the Cover article in this issue of Molecular Ecology, Lindner, Laine, et al. (2021) addressed this knowledge gap by investigating the role of DNA methylation in mediating reproductive timing in the seasonally breeding great tit (Parus major). Using a clever blood sampling design, they investigated genome-wide DNA methylation changes following individual female birds across multiple reproductive stages. This approach revealed 10 candidate genes with a strong correlation between promoter methylation and reproductive status. Some of these genes are known to be involved in reproductive timing (e.g., MYLK-like or NR5A1), yet for others this function was previously unknown (Figure 1). Interestingly, NR5A1 is a key transcription factor, which may affect other genes that are part of the same regulatory network. The findings of Lindner, Laine, et al. (2021) provide a strong case for studying DNA methylation to uncover how gene-environment interactions influence important life-history traits, such as reproductive timing.


Asunto(s)
Passeriformes , Reproducción , Animales , Metilación de ADN , Epigénesis Genética , Femenino , Genómica , Reproducción/genética
8.
Proc Biol Sci ; 287(1938): 20201339, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33143577

RESUMEN

Seasonal migration is a complex and variable behaviour with the potential to promote reproductive isolation. In Eurasian blackcaps (Sylvia atricapilla), a migratory divide in central Europe separating populations with southwest (SW) and southeast (SE) autumn routes may facilitate isolation, and individuals using new wintering areas in Britain show divergence from Mediterranean winterers. We tracked 100 blackcaps in the wild to characterize these strategies. Blackcaps to the west and east of the divide used predominantly SW and SE directions, respectively, but close to the contact zone many individuals took intermediate (S) routes. At 14.0° E, we documented a sharp transition from SW to SE migratory directions across only 27 (10-86) km, implying a strong selection gradient across the divide. Blackcaps wintering in Britain took northwesterly migration routes from continental European breeding grounds. They originated from a surprisingly extensive area, spanning 2000 km of the breeding range. British winterers bred in sympatry with SW-bound migrants but arrived 9.8 days earlier on the breeding grounds, suggesting some potential for assortative mating by timing. Overall, our data reveal complex variation in songbird migration and suggest that selection can maintain variation in migration direction across short distances while enabling the spread of a novel strategy across a wide range.


Asunto(s)
Migración Animal , Passeriformes , Animales , Evolución Biológica , Europa (Continente) , Aislamiento Reproductivo , Pájaros Cantores
9.
J Neuroeng Rehabil ; 16(1): 155, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31823792

RESUMEN

BACKGROUND: A prosthetic system should ideally reinstate the bidirectional communication between the user's brain and its end effector by restoring both motor and sensory functions lost after an amputation. However, current commercial prostheses generally do not incorporate somatosensory feedback. Even without explicit feedback, grasping using a prosthesis partly relies on sensory information. Indeed, the prosthesis operation is characterized by visual and sound cues that could be exploited by the user to estimate the prosthesis state. However, the quality of this incidental feedback has not been objectively evaluated. METHODS: In this study, the psychometric properties of the auditory and visual feedback of prosthesis motion were assessed and compared to that of a vibro-tactile interface. Twelve able-bodied subjects passively observed prosthesis closing and grasping an object, and they were asked to discriminate (experiment I) or estimate (experiment II) the closing velocity of the prosthesis using visual (VIS), acoustic (SND), or combined (VIS + SND) feedback. In experiment II, the subjects performed the task also with a vibrotactile stimulus (VIB) delivered using a single tactor. The outcome measures for the discrimination and estimation experiments were just noticeable difference (JND) and median absolute estimation error (MAE), respectively. RESULTS: The results demonstrated that the incidental sources provided a remarkably good discrimination and estimation of the closing velocity, significantly outperforming the vibrotactile feedback. Using incidental sources, the subjects could discriminate almost the minimum possible increment/decrement in velocity that could be commanded to the prosthesis (median JND < 2% for SND and VIS + SND). Similarly, the median MAE in estimating the prosthesis velocity randomly commanded from the full working range was also low, i.e., approximately 5% in SND and VIS + SND. CONCLUSIONS: Since the closing velocity is proportional to grasping force in state-of-the-art myoelectric prostheses, the results of the present study imply that the incidental feedback, when available, could be usefully exploited for grasping force control. Therefore, the impact of incidental feedback needs to be considered when designing a feedback interface in prosthetics, especially since the quality of estimation using supplemental sources (e.g., vibration) can be worse compared to that of the intrinsic cues.


Asunto(s)
Miembros Artificiales , Retroalimentación Sensorial/fisiología , Diseño de Prótesis , Adulto , Electromiografía/métodos , Femenino , Humanos , Masculino , Psicometría , Tacto , Vibración
10.
Int J Mol Sci ; 20(11)2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31151164

RESUMEN

Gliomas are the most frequent primary tumors of central nervous system and represent a heterogeneous group of tumors that originates from the glial cells. TP53, PTEN, and CDKN2A are important tumor suppressor genes that encode proteins involved in sustaining cellular homeostasis by different signaling pathways. Though genetic alterations in these genes play a significant role in tumorigenesis, few studies are available regarding the incidence and relation of concomitant TP53, PTEN, and CDKN2A alterations in gliomas. The purpose of this study was to evaluate the occurrence of mutation and deletion in these genes, through single-strand conformational polymorphism, array-comparative genomic hybridization, and fluorescence in situ hybridization techniques, in 69 gliomas samples. Molecular results demonstrated a significant higher prevalence of TP53, PTEN, and CDKN2A alterations in astrocytoma than other tumor subtypes, and heterozygous deletion was the most frequent event. In addition, a significant association was observed between TP53 and CDKN2A alterations (p = 0.0424), which tend to coexist in low grade astrocytomas (5/46 cases (10.9%)), suggesting that they are early events in development of these tumors, and PTEN and CDKN2A deletions (p = 0.0022), which occurred concomitantly in 9/50 (18%) patients, with CDKN2A changes preceding PTEN deletions, present preferably in high-grade gliomas.


Asunto(s)
Neoplasias Encefálicas/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Variación Genética , Glioma/diagnóstico , Glioma/genética , Fosfohidrolasa PTEN/genética , Proteína p53 Supresora de Tumor/genética , Adolescente , Adulto , Anciano , Biomarcadores de Tumor , Neoplasias Encefálicas/diagnóstico , Niño , Hibridación Genómica Comparativa , Análisis Mutacional de ADN , Exones , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Hibridación Fluorescente in Situ , Masculino , Persona de Mediana Edad , Mutación , Clasificación del Tumor , Polimorfismo de Nucleótido Simple , Adulto Joven
11.
Syst Biol ; 66(4): 531-550, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27539485

RESUMEN

Adaptive radiation is thought to be responsible for the evolution of a great portion of the past and present diversity of life. Instances of adaptive radiation, characterized by the rapid emergence of an array of species as a consequence to their adaptation to distinct ecological niches, are important study systems in evolutionary biology. However, because of the rapid lineage formation in these groups, and occasional gene flow between the participating species, it is often difficult to reconstruct the phylogenetic history of species that underwent an adaptive radiation. In this study, we present a novel approach for species-tree estimation in rapidly diversifying lineages, where introgression is known to occur, and apply it to a multimarker data set containing up to 16 specimens per species for a set of 45 species of East African cichlid fishes (522 individuals in total), with a main focus on the cichlid species flock of Lake Tanganyika. We first identified, using age distributions of most recent common ancestors in individual gene trees, those lineages in our data set that show strong signatures of past introgression. This led us to formulate three hypotheses of introgression between different lineages of Tanganyika cichlids: the ancestor of Boulengerochromini (or of Boulengerochromini and Bathybatini) received genomic material from the derived H-lineage; the common ancestor of Cyprichromini and Perissodini experienced, in turn, introgression from Boulengerochromini and/or Bathybatini; and the Lake Tanganyika Haplochromini and closely related riverine lineages received genetic material from Cyphotilapiini. We then applied the multispecies coalescent model to estimate the species tree of Lake Tanganyika cichlids, but excluded the lineages involved in these introgression events, as the multispecies coalescent model does not incorporate introgression. This resulted in a robust species tree, in which the Lamprologini were placed as sister lineage to the H-lineage (including the Eretmodini), and we identify a series of rapid splitting events at the base of the H-lineage. Divergence ages estimated with the multispecies coalescent model were substantially younger than age estimates based on concatenation, and agree with the geological history of the Great Lakes of East Africa. Finally, we formally tested the three hypotheses of introgression using a likelihood framework, and find strong support for introgression between some of the cichlid tribes of Lake Tanganyika.


Asunto(s)
Cíclidos/clasificación , Filogenia , Animales , Lagos , Modelos Estadísticos , Tanzanía
12.
Nucleic Acids Res ; 44(9): 4304-16, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27084949

RESUMEN

The chemically most complex modification in eukaryotic rRNA is the conserved hypermodified nucleotide N1-methyl-N3-aminocarboxypropyl-pseudouridine (m(1)acp(3)Ψ) located next to the P-site tRNA on the small subunit 18S rRNA. While S-adenosylmethionine was identified as the source of the aminocarboxypropyl (acp) group more than 40 years ago the enzyme catalyzing the acp transfer remained elusive. Here we identify the cytoplasmic ribosome biogenesis protein Tsr3 as the responsible enzyme in yeast and human cells. In functionally impaired Tsr3-mutants, a reduced level of acp modification directly correlates with increased 20S pre-rRNA accumulation. The crystal structure of archaeal Tsr3 homologs revealed the same fold as in SPOUT-class RNA-methyltransferases but a distinct SAM binding mode. This unique SAM binding mode explains why Tsr3 transfers the acp and not the methyl group of SAM to its substrate. Structurally, Tsr3 therefore represents a novel class of acp transferase enzymes.


Asunto(s)
Transferasas Alquil y Aril/fisiología , ARN Ribosómico 18S/biosíntesis , Saccharomyces cerevisiae/enzimología , Transferasas Alquil y Aril/química , Dominio Catalítico , Cristalografía por Rayos X , Células HCT116 , Humanos , Enlace de Hidrógeno , Secuencias Invertidas Repetidas , Modelos Moleculares , Unión Proteica , Procesamiento Postranscripcional del ARN , ARN Ribosómico 18S/química , S-Adenosilmetionina/química
13.
Mol Phylogenet Evol ; 83: 56-71, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25433288

RESUMEN

The species-flocks of cichlid fishes in the East African Great Lakes Victoria, Malawi and Tanganyika constitute the most diverse extant adaptive radiations in vertebrates. Lake Tanganyika, the oldest of the lakes, harbors the morphologically and genetically most diverse assemblage of cichlids and contains the highest number of endemic cichlid genera of all African lakes. Based on morphological grounds, the Tanganyikan cichlid species have been grouped into 12-16 distinct lineages, so-called tribes. While the monophyly of most of the tribes is well established, the phylogenetic relationships among the tribes remain largely elusive. Here, we present a new tribal level phylogenetic hypothesis for the cichlid fishes of Lake Tanganyika that is based on the so far largest set of nuclear markers and a total alignment length of close to 18kb. Using next-generation amplicon sequencing with the 454 pyrosequencing technology, we compiled a dataset consisting of 42 nuclear loci in 45 East African cichlid species, which we subjected to maximum likelihood and Bayesian inference phylogenetic analyses. We analyzed the entire concatenated dataset and each marker individually, and performed a Bayesian concordance analysis and gene tree discordance tests. Overall, we find strong support for a position of the Oreochromini, Boulengerochromini, Bathybatini and Trematocarini outside of a clade combining the substrate spawning Lamprologini and the mouthbrooding tribes of the 'H-lineage', which are both strongly supported to be monophyletic. The Eretmodini are firmly placed within the 'H-lineage', as sister-group to the most species-rich tribe of cichlids, the Haplochromini. The phylogenetic relationships at the base of the 'H-lineage' received less support, which is likely due to high speciation rates in the early phase of the radiation. Discordance among gene trees and marker sets further suggests the occurrence of past hybridization and/or incomplete lineage sorting in the cichlid fishes of Lake Tanganyika.


Asunto(s)
Evolución Biológica , Cíclidos/clasificación , Filogenia , Animales , Teorema de Bayes , Núcleo Celular/genética , Cíclidos/genética , Marcadores Genéticos , Genómica , Hibridación Genética , Lagos , Funciones de Verosimilitud , Modelos Genéticos , Alineación de Secuencia , Análisis de Secuencia de ADN , Tanzanía
14.
Mol Ecol Resour ; : e14021, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39279489

RESUMEN

DNA methylation (DNAm) is a mechanism for rapid acclimation to environmental conditions. In natural systems, small effect sizes relative to noise necessitates large sampling efforts to detect differences. Large numbers of individually sequenced libraries are costly. Pooling DNA prior to library preparation may be an efficient way to reduce costs and increase sample size, yet there are to date no recommendations in ecological epigenetics research. We test whether pooled and individual libraries yield comparable DNAm signals in a natural system exposed to different pollution levels by generating whole-epigenome data from two invasive molluscs (Corbicula fluminea, Dreissena polymorpha) collected from polluted and unpolluted localities (Italy). DNA of the same individuals were used for pooled and individual epigenomic libraries and sequenced with equivalent resources per individual. We found that pooling effectively captures similar genome-wide and global methylation signals as individual libraries, highlighting that pooled libraries are representative of the global population signal. However, pooled libraries yielded orders of magnitude more data than individual libraries, which was a consequence of higher coverage. We would therefore recommend aiming for a high initial coverage of individual libraries (15×) in future studies. Consequently, we detected many more differentially methylated regions (DMRs) with the pooled libraries and a significantly lower statistical power for regions from individual libraries. Computationally pooled data from the individual libraries produced fewer DMRs and the overlap with wet-lab pooled DMRs was relatively low. We discuss possible causes for discrepancies, list benefits and drawbacks of pooling, and provide recommendations for future epigenomic studies.

15.
Evol Appl ; 17(7): e13753, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39006007

RESUMEN

Duplicated genes provide the opportunity for evolutionary novelty and adaptive divergence. In many cases, having more gene copies increases gene expression, which might facilitate adaptation to stressful or novel environments. Conversely, overexpression or misexpression of duplicated genes can be detrimental and subject to negative selection. In this scenario, newly duplicate genes may evade purifying selection if they are epigenetically silenced, at least temporarily, leading them to persist in populations as copy number variations (CNVs). In animals and plants, younger gene duplicates tend to have higher levels of DNA methylation and lower levels of gene expression, suggesting epigenetic regulation could promote the retention of gene duplications via expression repression or silencing. Here, we test the hypothesis that DNA methylation variation coincides with young duplicate genes that are segregating as CNVs in six populations of the three-spined stickleback that span a salinity gradient from 4 to 30 PSU. Using reduced-representation bisulfite sequencing, we found DNA methylation and CNV differentiation outliers rarely overlapped. Whereas lineage-specific genes and young duplicates were found to be highly methylated, just two gene CNVs showed a significant association between promoter methylation level and copy number, suggesting that DNA methylation might not interact with CNVs in our dataset. If most new duplications are regulated for dosage by epigenetic mechanisms, our results do not support a strong contribution from DNA methylation soon after duplication. Instead, our results are consistent with a preference to duplicate genes that are already highly methylated.

16.
Nucleic Acids Res ; 39(4): 1526-37, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20972225

RESUMEN

The Nep1 (Emg1) SPOUT-class methyltransferase is an essential ribosome assembly factor and the human Bowen-Conradi syndrome (BCS) is caused by a specific Nep1(D86G) mutation. We recently showed in vitro that Methanocaldococcus jannaschii Nep1 is a sequence-specific pseudouridine-N1-methyltransferase. Here, we show that in yeast the in vivo target site for Nep1-catalyzed methylation is located within loop 35 of the 18S rRNA that contains the unique hypermodification of U1191 to 1-methyl-3-(3-amino-3-carboxypropyl)-pseudouri-dine (m1acp3Ψ). Specific (14)C-methionine labelling of 18S rRNA in yeast mutants showed that Nep1 is not required for acp-modification but suggested a function in Ψ1191 methylation. ESI MS analysis of acp-modified Ψ-nucleosides in a Δnep1-mutant showed that Nep1 catalyzes the Ψ1191 methylation in vivo. Remarkably, the restored growth of a nep1-1(ts) mutant upon addition of S-adenosylmethionine was even observed after preventing U1191 methylation in a Δsnr35 mutant. This strongly suggests a dual Nep1 function, as Ψ1191-methyltransferase and ribosome assembly factor. Interestingly, the Nep1 methyltransferase activity is not affected upon introduction of the BCS mutation. Instead, the mutated protein shows enhanced dimerization propensity and increased affinity for its RNA-target in vitro. Furthermore, the BCS mutation prevents nucleolar accumulation of Nep1, which could be the reason for reduced growth in yeast and the Bowen-Conradi syndrome.


Asunto(s)
Metiltransferasas/metabolismo , Proteínas Nucleares/genética , Seudouridina/metabolismo , ARN Ribosómico 18S/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Nucléolo Celular/enzimología , Dimerización , Retardo del Crecimiento Fetal/genética , Humanos , Methanococcales/enzimología , Metilación , Metiltransferasas/genética , Datos de Secuencia Molecular , Mutación Puntual , Trastornos Psicomotores/genética , ARN Ribosómico 18S/química , Proteínas Ribosómicas/genética , Ribosomas/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Ann Med ; 55(2): 2255206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37677026

RESUMEN

PURPOSE: Many individuals with a lower limb amputation experience problems with the fitting of the socket of their prosthesis, leading to dissatisfaction or device rejection. Osseointegration (OI)- the implantation of a shaft directly interfacing with the remaining bone- is an alternative for these patients. In this observational study, we investigated how bone anchoring influences neuromuscular parameters during balance control in a patient with a unilateral transfemoral amputation. MATERIAL AND METHODS: Center of pressure (CoP) and electromyography (EMG) signals from muscles controlling the hip and the ankle of the intact leg were recorded during quiet standing six months before and one and a half years after this patient underwent an OI surgery. Results were compared to a control group of nine able-bodied individuals. RESULTS: Muscle co-activation and EMG intensity decreased after bone anchoring, approaching the levels of able-bodied individuals. Muscle co-activation controlling the ankle decreased in the high-frequency range, and the EMG intensity spectrum decreased in the lower-frequency range for all muscles when vision was allowed. With eyes closed, the ankle extensor muscle showed an increased EMG intensity in the high-frequency range post-surgery. CoP length increased in the mediolateral direction of the amputated leg. CONCLUSIONS: These findings point to shifts in the patient's neuromuscular profile towards the one of able-bodied individuals.


Asunto(s)
Amputados , Prótesis Anclada al Hueso , Humanos , Oseointegración , Músculo Esquelético , Electromiografía
18.
Evolution (N Y) ; 16(1): 2, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36789285

RESUMEN

With the advent of high-throughput genome sequencing, bioinformatics training has become essential for research in evolutionary biology and related fields. However, individual research groups are often not in the position to teach students about the most up-to-date methodology in the field. To fill this gap, extended bioinformatics courses have been developed by various institutions and provide intense training over the course of two or more weeks. Here, we describe our experience with the organization of a course in one of the longest-running extended bioinformatics series of workshops, the Evomics Workshop on Population and Speciation Genomics that takes place biennially in the UNESCO world heritage town of Ceský Krumlov, Czech Republic. We list the key ingredients that make this workshop successful in our view, explain the routine for workshop organization that we have optimized over the years, and describe the most important lessons that we have learned from it. We report the results of a survey conducted among past workshop participants that quantifies measures of effective teaching and provide examples of how the workshop setting has led to the cross-fertilisation of ideas and ultimately scientific progress. We expect that our account may be useful for other groups aiming to set up their own extended bioinformatics courses.

19.
Am J Hum Genet ; 84(6): 728-39, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19463982

RESUMEN

Bowen-Conradi syndrome (BCS) is an autosomal-recessive disorder characterized by severely impaired prenatal and postnatal growth, profound psychomotor retardation, and death in early childhood. Nearly all reported BCS cases have been among Hutterites, with an estimated birth prevalence of 1/355. We previously localized the BCS gene to a 1.9 Mbp interval on human chromosome 12p13.3. The 59 genes in this interval were ranked as candidates for BCS, and 35 of these, including all of the best candidates, were sequenced. We identified variant NM_006331.6:c.400A-->G, p.D86G in the 18S ribosome assembly protein EMG1 as the probable cause of BCS. This mutation segregated with disease, was not found in 414 non-Hutterite alleles, and altered a highly conserved aspartic acid (D) residue. A structural model of human EMG1 suggested that the D86 residue formed a salt bridge with arginine 84 that would be disrupted by the glycine (G) substitution. EMG1 mRNA was detected in all human adult and fetal tissues tested. In BCS patient fibroblasts, EMG1 mRNA levels did not differ from those of normal cells, but EMG1 protein was dramatically reduced in comparison to that of normal controls. In mammalian cells, overexpression of EMG1 harboring the D86G mutation decreased the level of soluble EMG1 protein, and in yeast two-hybrid analysis, the D86G substitution increased interaction between EMG1 subunits. These findings suggested that the D-to-G mutation caused aggregation of EMG1, thereby reducing the level of the protein and causing BCS.


Asunto(s)
Cromosomas Humanos Par 12/genética , ARN Polimerasas Dirigidas por ADN/genética , Retardo del Crecimiento Fetal/genética , Mutación/genética , Trastornos Psicomotores/genética , Ribosomas/genética , Secuencia de Aminoácidos , Animales , Estudios de Casos y Controles , Línea Celular , Cricetinae , ARN Polimerasas Dirigidas por ADN/metabolismo , Femenino , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Fibroblastos/citología , Fibroblastos/metabolismo , Genes Recesivos , Humanos , Immunoblotting , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , Biogénesis de Organelos , Linaje , Conformación Proteica , Trastornos Psicomotores/metabolismo , Trastornos Psicomotores/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Aminoácido , Síndrome , Técnicas del Sistema de Dos Híbridos
20.
Nucleic Acids Res ; 38(7): 2387-98, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20047967

RESUMEN

Nep1 (Emg1) is a highly conserved nucleolar protein with an essential function in ribosome biogenesis. A mutation in the human Nep1 homolog causes Bowen-Conradi syndrome-a severe developmental disorder. Structures of Nep1 revealed a dimer with a fold similar to the SPOUT-class of RNA-methyltransferases suggesting that Nep1 acts as a methyltransferase in ribosome biogenesis. The target for this putative methyltransferase activity has not been identified yet. We characterized the RNA-binding specificity of Methanocaldococcus jannaschii Nep1 by fluorescence- and NMR-spectroscopy as well as by yeast three-hybrid screening. Nep1 binds with high affinity to short RNA oligonucleotides corresponding to nt 910-921 of M. jannaschii 16S rRNA through a highly conserved basic surface cleft along the dimer interface. Nep1 only methylates RNAs containing a pseudouridine at a position corresponding to a previously identified hypermodified N1-methyl-N3-(3-amino-3-carboxypropyl) pseudouridine (m1acp3-Psi) in eukaryotic 18S rRNAs. Analysis of the methylated nucleoside by MALDI-mass spectrometry, HPLC and NMR shows that the methyl group is transferred to the N1 of the pseudouridine. Thus, Nep1 is the first identified example of an N1-specific pseudouridine methyltransferase. This enzymatic activity is also conserved in human Nep1 suggesting that Nep1 is the methyltransferase in the biosynthesis of m1acp3-Psi in eukaryotic 18S rRNAs.


Asunto(s)
Proteínas Arqueales/química , Methanococcales/enzimología , Metiltransferasas/química , Proteínas Nucleares/química , Seudouridina/metabolismo , ARN Ribosómico/metabolismo , Proteínas Arqueales/metabolismo , Secuencia de Bases , Sitios de Unión , Secuencia de Consenso , Humanos , Methanococcales/genética , Metilación , Metiltransferasas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/metabolismo , Seudouridina/análogos & derivados , Seudouridina/análisis , ARN de Hongos/química , ARN de Hongos/metabolismo , ARN Ribosómico/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Espectrometría de Fluorescencia , Técnicas del Sistema de Dos Híbridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA