Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Vet Res ; 11: 18, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25644810

RESUMEN

BACKGROUND: Etorphine, a potent opioid agonist, causes pulmonary hypertension and respiratory depression. Whether etorphine-induced pulmonary hypertension negatively influences pulmonary gas exchange and exacerbates the effects of ventilator depression and the resultant hypoxemia is unknown. To determine if these effects occurred we instrumented twelve goats with peripheral and pulmonary arterial catheters to measure systemic and pulmonary pressures before and after etorphine administration. Concurrent cardiopulmonary and arterial blood gas variables were also measured. RESULTS: Etorphine induced hypoventilation (55% reduction to 7.6 ± 2.7 L.min(-1), F(11,44) = 15.2 P < 0.0001), hypoxia (<45 mmHg, F(11,44) = 8.6 P < 0.0001), hypercapnia (>40 mmHg, F(11,44) = 5.6 P < 0.0001) and pulmonary hypertension (mean 23 ± 6 mmHg, F(11,44) = 8.2 P < 0.0001). Within 6 min of etorphine administration hypoxia was twice (F(11,22) = 3.0 P < 0.05) as poor than that expected from etorphine-induced hypoventilation alone. This disparity appeared to result from a decrease in the movement of oxygen (gas exchange) across the alveoli membrane, as revealed by an increase in the P(A-a)O2 gradient (F(11,44) = 7.9 P < 0.0001). The P(A-a)O2 gradient was not correlated with global changes in the ventilation perfusion ratio (P = 0.28) but was correlated positively with the mean pulmonary artery pressure (P = 0.017, r(2) = 0.97), indicating that pulmonary pressure played a significant role in altering pulmonary gas exchange. CONCLUSION: Attempts to alleviate etorphine-induced hypoxia therefore should focus not only on reversing the opioid-induced respiratory depression, but also on improving gas exchange by preventing etorphine-induced pulmonary hypertension.


Asunto(s)
Etorfina/efectos adversos , Enfermedades de las Cabras/inducido químicamente , Hipertensión Pulmonar/veterinaria , Hipoventilación/veterinaria , Hipoxia/veterinaria , Analgésicos Opioides/efectos adversos , Animales , Femenino , Enfermedades de las Cabras/patología , Cabras , Hipertensión Pulmonar/inducido químicamente , Hipoventilación/inducido químicamente , Hipoxia/inducido químicamente
2.
Conserv Physiol ; 11(1): coac077, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36655170

RESUMEN

Thirty-six free-ranging lions (12 per group) were immobilized with tiletamine-zolazepam (Zoletil 0.6 mg/kg i.m.) plus medetomidine (0.036 mg/kg i.m.) (TZM), ketamine (3.0 mg/kg i.m.) plus medetomidine (0.036 mg/kg i.m.) (KM) or ketamine (1.2 mg/kg i.m.) plus butorphanol (0.24 mg/kg i.m.) plus medetomidine (0.036 mg/kg i.m.) (KBM). During immobilization cardiovascular variables were monitored at 5-minute intervals for a period of 30 minutes. Lions immobilized with all three drug combinations were severely hypertensive. Systolic arterial pressure was higher at initial sampling in lions immobilized with KM (237.3 ± 24.8 mmHg) than in those immobilized with TZM (221.0 ± 18.1 mmHg) or KBM (226.0 ± 20.6 mmHg) and decreased to 205.8 ± 19.4, 197.7 ± 23.7 and 196.3 ± 17.7 mmHg, respectively. Heart rates were within normal ranges for healthy, awake lions and decreased throughout the immobilization regardless of drug combination used. Lions immobilized with TZM had a higher occurrence (66%) of skipped heart beats than those immobilized with KBM (25%). The three drug combinations all caused negative cardiovascular effects, which were less when KBM was used, but adverse enough to warrant further investigations to determine if these effects can be reversed or prevented when these three combinations are used to immobilize free-living lions.

3.
Conserv Physiol ; 11(1): coad059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37575612

RESUMEN

Free-living lions (12 per group) were immobilized with tiletamine-zolazepam-medetomidine (TZM), ketamine-medetomidine (KM), or ketamine-butorphanol-medetomidine (KBM). During immobilization, respiratory, blood gas and acid-base variables were monitored for 30 minutes. Respiratory rates were within expected ranges and remained constant throughout the immobilizations. Ventilation increased in lions over the immobilization period from 27.2 ± 9.5 to 35.1 ± 25.4 L/min (TZM), 26.1 ± 14.3 to 28.4 ± 18.4 L/min (KM) and 23.2 ± 10.8 to 26.7 ± 14.2 L/min (KBM). Tidal volume increased over the immobilization period from 1800 ± 710 to 2380 ± 1930 mL/breath (TZM), 1580 ± 470 to 1640 ± 500 mL/breath (KM) and 1600 ± 730 to 1820 ± 880 mL/breath (KBM). Carbon dioxide production was initially lower in KBM (0.4 ± 0.2 L/min) than in TZM (0.5 ± 0.2 L/min) lions but increased over time in all groups. Oxygen consumption was 0.6 ± 0.2 L/min (TZM), 0.5 ± 0.2 L/min (KM) and 0.5 ± 0.2 L/min (KBM) and remained constant throughout the immobilization period. Initially the partial pressure of arterial oxygen was lower in KBM (74.0 ± 7.8 mmHg) than in TZM (78.5 ± 4.7 mmHg) lions, but increased to within expected range in all groups over time. The partial pressure of arterial carbon dioxide was higher throughout the immobilizations in KBM (34.5 ± 4.2 mmHg) than in TZM (32.6 ± 2.2 mmHg) and KM (32.6 ± 3.8 mmHg) lions. Alveolar-arterial gradients were initially elevated, but decreased over time for all groups, although in KM lions it remained elevated (26.9 ± 10.4 mmHg) above the expected normal. Overall, all three drug combinations caused minor respiratory and metabolic side-effects in the immobilized lions. However, initially hypoxaemia occurred as the drug combinations, and possibly the stress induced by the immobilization procedure, hinder alveoli oxygen gas exchange.

4.
Front Physiol ; 11: 637, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733261

RESUMEN

Shifting activity to cooler times of day buffers animals from increased heat and aridity under climate change. Conversely, when resources are limited, some nocturnal species become more diurnal, reducing energetic costs of keeping warm at night. Aardvarks (Orycteropus afer) are nocturnal, obligate ant- and termite-eating mammals which may be threatened directly by increasing heat and aridity, or indirectly by the effects of climate change on their prey. We hypothesised that the minimum 24-h body temperature of aardvarks would decline during energy scarcity, and that aardvarks would extend their active phases to compensate for reduced resource availability, possibly resulting in increased diurnal activity when aardvarks were energetically compromised. To measure their thermoregulatory patterns and foraging activity, we implanted abdominal temperature and activity data loggers into 12 adult aardvarks and observed them for varying durations over 3 years in the Kalahari. Under non-drought conditions, aardvarks tightly controlled their 24-h body temperature rhythm (mean amplitude of the 24-h body temperature rhythm was 1.8 ± 0.3°C during summer and 2.1 ± 0.1°C during winter) and usually were nocturnal. During a summer drought, aardvarks relaxed the precision of body temperature regulation (mean 24-h amplitude 2.3 ± 0.4°C) and those that subsequently died shifted their activity to progressively earlier times of day in the weeks before their deaths. Throughout the subsequent winter, the aardvarks' minimum 24-h body temperatures declined, causing exaggerated heterothermy (4.7 ± 1.3°C; absolute range 24.7 to 38.8°C), with one individual's body temperature varying by 11.7°C within 8 h. When body temperatures were low, aardvarks often emerged from burrows during daytime, and occasionally returned before sunset, resulting in completely diurnal activity. Aardvarks also shortened their active periods by 25% during food scarcity, likely to avoid energetic costs incurred by foraging. Despite their physiological and behavioural flexibility, aardvarks were unable to compensate for reduced food availability. Seven study aardvarks and several others died, presumably from starvation. Our results do not bode well for aardvarks facing climate change, and for the many animal species dependent on aardvark burrows for refuge.

5.
Vet Rec ; 181(18): 481, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28978715

RESUMEN

Naltrexone is used to antagonise etorphine immobilisation, but a safe and effective dose for this purpose has not been objectively determined. Eight domestic goats were immobilised with etorphine (0.07 mg/kg) eight times at ≥13 day intervals. Naltrexone at doses of 0.5, 1, 2, 5, 10, 20 and 40 mg/mg etorphine were administered intravenously 17 minutes after etorphine injection. Effectiveness of antagonism was recorded based on recovery and renarcotisation scores and clinical observations. All doses produced rapid recovery to the point of standing (median 59 seconds, range 33-157 seconds), with no significant differences in recovery times (P=0.44). The lower naltrexone doses resulted in renarcotisation in some goats: 4/8 in the 10-mg dose trial, 7/8 in the 5-mg dose trial, and 8/8 in the 2-mg, 1-mg and 0.5-mg dose trials. Lower doses resulted in more severe signs of renarcotisation. Complications of renarcotisation included increased body temperature; this occurred just before signs of renarcotisation and was greater in animals with high renarcotisation scores (P<0.01). The lowest, safest effective naltrexone dose that we used to antagonise etorphine immobilisation was 20 mg/mg etorphine, which produced rapid recovery to standing with no renarcotisation.


Asunto(s)
Etorfina/antagonistas & inhibidores , Inmovilización/veterinaria , Naltrexona/administración & dosificación , Antagonistas de Narcóticos/administración & dosificación , Animales , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Femenino , Cabras , Masculino
6.
J Comp Physiol B ; 182(3): 437-49, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22001971

RESUMEN

Heterothermy, a variability in body temperature beyond the normal limits of homeothermy, is widely viewed as a key adaptation of arid-adapted ungulates. However, desert ungulates with a small body mass, i.e. a relatively large surface area-to-volume ratio and a small thermal inertia, are theoretically less likely to employ adaptive heterothermy than are larger ungulates. We measured body temperature and activity patterns, using implanted data loggers, in free-ranging Arabian oryx (Oryx leucoryx, ±70 kg) and the smaller Arabian sand gazelle (Gazella subgutturosa marica, ±15 kg) inhabiting the same Arabian desert environment, at the same time. Compared to oryx, sand gazelle had higher mean daily body temperatures (F(1,6) = 47.3, P = 0.0005), higher minimum daily body temperatures (F(1,6) = 42.6, P = 0.0006) and higher maximum daily body temperatures (F(1,6) = 11.0, P = 0.02). Despite these differences, both species responded similarly to changes in environmental conditions. As predicted for adaptive heterothermy, maximum daily body temperature increased (F(1,6) = 84.0, P < 0.0001), minimum daily body temperature decreased (F(1,6) = 92.2, P < 0.0001), and daily body temperature amplitude increased (F(1,6) = 97.6, P < 0.0001) as conditions got progressively hotter and drier. There were no species differences in activity levels, however, both gazelle and oryx showed a biphasic or crepuscular rhythm during the warm wet season but shifted to a more nocturnal rhythm during the hot dry season. Activity was attenuated during the heat of the day at times when both species selected cool microclimates. These two species of Arabian ungulates employ heterothermy, cathemerality and shade seeking very similarly to survive the extreme, arid conditions of Arabian deserts, despite their size difference.


Asunto(s)
Adaptación Biológica/fisiología , Antílopes/fisiología , Tamaño Corporal/fisiología , Temperatura Corporal/fisiología , Ritmo Circadiano/fisiología , Actividad Motora/fisiología , Análisis de Varianza , Animales , Humedad , Arabia Saudita , Especificidad de la Especie , Telemetría , Temperatura
7.
J Comp Physiol B ; 180(7): 1111-9, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20502901

RESUMEN

Heterothermy, a variability in body temperature beyond the limits of homeothermy, has been advanced as a key adaptation of Arabian oryx (Oryx leucoryx) to their arid-zone life. We measured body temperature using implanted data loggers, for a 1-year period, in five oryx free-living in the deserts of Saudi Arabia. As predicted for adaptive heterothermy, during hot months compared to cooler months, not only were maximum daily body temperatures higher (41.1 ± 0.3 vs. 39.7 ± 0.1°C, P = 0.0002) but minimum daily body temperatures also were lower (36.1 ± 0.3 vs. 36.8 ± 0.2°C, P = 0.04), resulting in a larger daily amplitude of the body temperature rhythm (5.0 ± 0.5 vs. 2.9 ± 0.2°C, P = 0.0007), while mean daily body temperature rose by only 0.4°C. The maximum daily amplitude of the body temperature rhythm reached 7.7°C for two of our oryx during the hot-dry period, the largest amplitude ever recorded for a large mammal. Body temperature variability was influenced not only by ambient temperature but also water availability, with oryx displaying larger daily amplitudes of the body temperature rhythm during warm-dry months compared to warm-wet months (3.6 ± 0.6 vs. 2.3 ± 0.3°C, P = 0.005), even though ambient temperatures were the same. Free-living Arabian oryx therefore employ heterothermy greater than that recorded in any other large mammal, but water limitation, rather than high ambient temperature, seems to be the primary driver of this heterothermy.


Asunto(s)
Aclimatación , Antílopes/fisiología , Regulación de la Temperatura Corporal , Ritmo Circadiano , Ingestión de Líquidos , Animales , Deshidratación/fisiopatología , Clima Desértico , Femenino , Calor/efectos adversos , Masculino , Fotoperiodo , Arabia Saudita , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA