Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Soc Nephrol ; 29(12): 2809-2819, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30377230

RESUMEN

BACKGROUND: Genetic variation in complement genes is a predisposing factor for atypical hemolytic uremic syndrome (aHUS), a life-threatening thrombotic microangiopathy, however interpreting the effects of genetic variants is challenging and often ambiguous. METHODS: We analyzed 93 complement and coagulation genes in 400 patients with aHUS, using as controls 600 healthy individuals from Iowa and 63,345 non-Finnish European individuals from the Genome Aggregation Database. After adjusting for population stratification, we then applied the Fisher exact, modified Poisson exact, and optimal unified sequence kernel association tests to assess gene-based variant burden. We also applied a sliding-window analysis to define the frequency range over which variant burden was significant. RESULTS: We found that patients with aHUS are enriched for ultrarare coding variants in the CFH, C3, CD46, CFI, DGKE, and VTN genes. The majority of the significance is contributed by variants with a minor allele frequency of <0.1%. Disease-related variants tend to occur in specific complement protein domains of FH, CD46, and C3. We observed no enrichment for multiple rare coding variants in gene-gene combinations. CONCLUSIONS: In known aHUS-associated genes, variants with a minor allele frequency >0.1% should not be considered pathogenic unless valid enrichment and/or functional evidence are available. VTN, which encodes vitronectin, an inhibitor of the terminal complement pathway, is implicated as a novel aHUS-associated gene. Patients with aHUS are not enriched for multiple rare variants in complement genes. In aggregate, these data may help in directing clinical management of aHUS.


Asunto(s)
Síndrome Hemolítico Urémico Atípico/genética , Adolescente , Adulto , Anciano , Síndrome Hemolítico Urémico Atípico/sangre , Factores de Coagulación Sanguínea/genética , Niño , Preescolar , Proteínas del Sistema Complemento/genética , Bases de Datos Genéticas , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Variación Genética , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Mutación , Vitronectina/genética , Adulto Joven
2.
Nephrol Dial Transplant ; 33(12): 2260-2265, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29370420

RESUMEN

Background: C3 glomerulonephritis (C3GN) is caused by alternate complement pathway over-activation. It frequently progresses to end-stage renal disease, recurs in two-thirds of transplants and in half of these cases progresses to allograft loss. There is currently no proven treatment for C3GN. Case Presentation: We describe a family segregating pathogenic alleles of complement factor H and I (CFH and CFI). The only member carrying both mutations developed C3GN. Prolonged delayed graft function after deceased donor transplantation, heavy proteinuria and isolated C3 hypocomplementemia prompted an allograft biopsy confirming diagnosis of recurrent C3GN. Discussion: This is the first report of early recurrence of C3GN in an allograft in a patient with known mutations in complement regulatory genes and no preexisting para-proteinemia. Complement activation resulting from ischemia-reperfusion injury from prolonged cold ischemia time unabated in the setting of deficiency of two major complement regulators likely led to the early and severe recurrence. In atypical hemolytic uremic syndrome, the terminal complement cascade activation in the sentinel event initiating endothelial injury; blockade at the level of C5 convertase with eculizumab is uniformly highly effective in management. C3 glomerulopathies (C3GN and dense deposit disease) are a more complex and heterogeneous group. The relative degree of dysregulation at the levels of C3 and C5 convertases and therefore response to eculizumab varies among patients. In our patient, the clinical response to eculizumab was dramatic with recovery of allograft function and complete resolution of proteinuria. We review all cases of recurrent C3 glomerulopathy treated with eculizumab and discuss how complement biomarkers may aid in predicting response to therapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Factor H de Complemento/genética , Fibrinógeno/genética , Glomerulonefritis/genética , Trasplante de Riñón/efectos adversos , Mutación , Donantes de Tejidos , Aloinjertos , Biomarcadores/metabolismo , Biopsia , Activación de Complemento , Factor H de Complemento/metabolismo , Vía Alternativa del Complemento , ADN/genética , Análisis Mutacional de ADN , Fibrinógeno/metabolismo , Glomerulonefritis/tratamiento farmacológico , Glomerulonefritis/metabolismo , Humanos , Fallo Renal Crónico/cirugía , Glomérulos Renales/patología , Masculino , Persona de Mediana Edad , Linaje , Recurrencia
3.
Am J Kidney Dis ; 70(6): 834-843, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28838767

RESUMEN

BACKGROUND: C3 glomerulopathy (C3G) defines a group of rare complement-mediated kidney diseases with a shared underlying pathophysiology: dysregulation of complement in the fluid phase and glomerular microenvironment. Dysregulation can be driven by autoantibodies to C3 and C5 convertases. STUDY DESIGN: Case series. SETTING & PARTICIPANTS: 168 patients with C3G (dense deposit disease, 68; C3 glumerulonephritis, 100) selected from our C3G biobank. OUTCOMES: Patient-purified immunoglobulin Gs were tested for C4 nephritic factors (C4NeFs). These autoantibodies recognize C4b2a, the C3 convertase of the classical pathway of complement. MEASUREMENTS: C4NeFs were detected using a modified hemolytic assay. RESULTS: C4NeFs were identified in 5 patients, 4 of whom had C3 glomerulonephritis. C4NeFs were associated with dysregulation of C3 and C5 convertases, and they appear to stabilize these convertases in a dose-dependent manner. C4NeFs also appear to protect C4b2a from decay mediated by soluble CR1 and C4 binding protein. The stabilizing activity of the autoantibodies was further demonstrated by using heat treatment to inactivate complement. C4NeFs were not detected in 150 patients with another complement-mediated kidney disease, atypical hemolytic uremic syndrome. They were also absent in 300 apparently healthy controls. LIMITATIONS: In addition to C4NeFs, 2 patients had positive findings for other autoantibodies: one patient also had autoantibodies to factor H; the other patient also had autoantibodies to C3bBb (C3NeFs). CONCLUSIONS: The finding of C4NeFs in a small percentage of patients with C3G highlights the challenge in identifying autoantibodies that drive complement dysregulation and underscores the complexity of the autoantibody repertoire that can be identified in these patients.


Asunto(s)
Autoanticuerpos/inmunología , Complemento C3/inmunología , Proteínas del Sistema Complemento/inmunología , Glomerulonefritis Membranoproliferativa/inmunología , Adolescente , Adulto , Niño , C3 Convertasa de la Vía Alternativa del Complemento/inmunología , Factor Nefrítico del Complemento 3/inmunología , C5 Convertasa de la Vía Clásica del Complemento , Factor H de Complemento/inmunología , Femenino , Humanos , Enfermedades Renales/inmunología , Masculino , Adulto Joven
4.
J Am Soc Nephrol ; 27(4): 1245-53, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26283675

RESUMEN

The thrombotic microangiopathies (TMAs) and C3 glomerulopathies (C3Gs) include a spectrum of rare diseases such as atypical hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, C3GN, and dense deposit disease, which share phenotypic similarities and underlying genetic commonalities. Variants in several genes contribute to the pathogenesis of these diseases, and identification of these variants may inform the diagnosis and treatment of affected patients. We have developed and validated a comprehensive genetic panel that screens all exons of all genes implicated in TMA and C3G. The closely integrated pipeline implemented includes targeted genomic enrichment, massively parallel sequencing, bioinformatic analysis, and a multidisciplinary conference to analyze identified variants in the context of each patient's specific phenotype. Herein, we present our 1-year experience with this panel, during which time we studied 193 patients. We identified 17 novel and 74 rare variants, which we classified as pathogenic (11), likely pathogenic (12), and of uncertain significance (68). Compared with controls, patients with C3G had a higher frequency of rare and novel variants in C3 convertase (C3 and CFB) and complement regulator (CFH, CFI, CFHR5, and CD46) genes (P<0.05). In contrast, patients with TMA had an increase in rare and novel variants only in complement regulator genes (P<0.01), a distinction consistent with differing sites of complement dysregulation in these two diseases. In summary, we were able to provide a positive genetic diagnosis in 43% and 41% of patients carrying the clinical diagnosis of C3G and TMA, respectively.


Asunto(s)
Enfermedades Renales/diagnóstico , Enfermedades Renales/genética , Glomérulos Renales , Microangiopatías Trombóticas/diagnóstico , Microangiopatías Trombóticas/genética , Adolescente , Niño , Preescolar , Complemento C3 , Femenino , Pruebas Genéticas/métodos , Humanos , Enfermedades Renales/inmunología , Masculino
5.
J Med Genet ; 52(12): 823-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26445815

RESUMEN

BACKGROUND: Countries with culturally accepted consanguinity provide a unique resource for the study of rare recessively inherited genetic diseases. Although hereditary hearing loss (HHL) is not uncommon, it is genetically heterogeneous, with over 85 genes causally implicated in non-syndromic hearing loss (NSHL). This heterogeneity makes many gene-specific types of NSHL exceedingly rare. We sought to define the spectrum of autosomal recessive HHL in Iran by investigating both common and rarely diagnosed deafness-causing genes. DESIGN: Using a custom targeted genomic enrichment (TGE) panel, we simultaneously interrogated all known genetic causes of NSHL in a cohort of 302 GJB2-negative Iranian families. RESULTS: We established a genetic diagnosis for 67% of probands and their families, with over half of all diagnoses attributable to variants in five genes: SLC26A4, MYO15A, MYO7A, CDH23 and PCDH15. As a reflection of the power of consanguinity mapping, 26 genes were identified as causative for NSHL in the Iranian population for the first time. In total, 179 deafness-causing variants were identified in 40 genes in 201 probands, including 110 novel single nucleotide or small insertion-deletion variants and three novel CNV. Several variants represent founder mutations. CONCLUSION: This study attests to the power of TGE and massively parallel sequencing as a diagnostic tool for the evaluation of hearing loss in Iran, and expands on our understanding of the genetics of HHL in this country. Families negative for variants in the genes represented on this panel represent an excellent cohort for novel gene discovery.


Asunto(s)
Pérdida Auditiva/genética , Conexina 26 , Conexinas , Consanguinidad , Efecto Fundador , Frecuencia de los Genes , Genes Recesivos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pérdida Auditiva/patología , Humanos , Irán
6.
Am J Med Genet A ; 167A(12): 2957-65, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26416264

RESUMEN

Deafness is the most frequent sensory disorder. With over 90 genes and 110 loci causally implicated in non-syndromic hearing loss, it is phenotypically and genetically heterogeneous. Here, we investigate the genetic etiology of deafness in four families of Iranian origin segregating autosomal recessive non-syndromic hearing loss (ARNSHL). We used a combination of linkage analysis, homozygosity mapping, and a targeted genomic enrichment platform to simultaneously screen 90 known deafness-causing genes for pathogenic variants. Variant segregation was confirmed by Sanger sequencing. Linkage analysis and homozygosity mapping showed segregation with the DFNB57 locus on chromosome 10 in two families. Targeted genomic enrichment with massively parallel sequencing identified causal variants in PDZD7: a homozygous missense variant (p.Gly103Arg) in one family and compound heterozygosity for missense (p.Met285Arg) and nonsense (p.Tyr500Ter) variants in the second family. Screening of two additional families identified two more variants: (p.Gly228Arg) and (p.Gln526Ter). Variant segregation with the hearing loss phenotype was confirmed in all families by Sanger sequencing. The missense variants are predicted to be deleterious, and the two nonsense mutations produce null alleles. This report is the first to show that mutations in PDZD7 cause ARNSHL, a finding that offers addition insight into the USH2 interactome. We also describe a novel likely disease-causing mutation in CIB2 and illustrate the complexity associated with gene identification in diseases that exhibit large genetic and phenotypic heterogeneity.


Asunto(s)
Proteínas Portadoras/genética , Sordera/genética , Pérdida Auditiva/genética , Mutación , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Cromosomas Humanos Par 10 , Femenino , Genes Recesivos , Heterogeneidad Genética , Ligamiento Genético , Haplotipos , Heterocigoto , Homocigoto , Humanos , Masculino , Modelos Moleculares , Linaje
7.
J Am Soc Nephrol ; 25(1): 55-64, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24029428

RESUMEN

Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy caused by uncontrolled activation of the alternative pathway of complement at the cell surface level that leads to microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney failure. In approximately one half of affected patients, pathogenic loss-of-function variants in regulators of complement or gain-of-function variants in effectors of complement are identified, clearly implicating complement in aHUS. However, there are strong lines of evidence supporting the presence of additional genetic contributions to this disease. To identify novel aHUS-associated genes, we completed a comprehensive screen of the complement and coagulation pathways in 36 patients with sporadic aHUS using targeted genomic enrichment and massively parallel sequencing. After variant calling, quality control, and hard filtering, we identified 84 reported or novel nonsynonymous variants, 22 of which have been previously associated with disease. Using computational prediction methods, 20 of the remaining 62 variants were predicted to be deleterious. Consistent with published data, nearly one half of these 42 variants (19; 45%) were found in genes implicated in the pathogenesis of aHUS. Several genes in the coagulation pathway were also identified as important in the pathogenesis of aHUS. PLG, in particular, carried more pathogenic variants than any other coagulation gene, including three known plasminogen deficiency mutations and a predicted pathogenic variant. These data suggest that mutation screening in patients with aHUS should be broadened to include genes in the coagulation pathway.


Asunto(s)
Coagulación Sanguínea/genética , Proteínas del Sistema Complemento/genética , Síndrome Hemolítico-Urémico/sangre , Síndrome Hemolítico-Urémico/genética , Mutación , Plasminógeno/deficiencia , Plasminógeno/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Síndrome Hemolítico Urémico Atípico , Niño , Preescolar , Vía Alternativa del Complemento/genética , Secuencia Conservada , Variaciones en el Número de Copia de ADN , Femenino , Pruebas Genéticas , Variación Genética , Síndrome Hemolítico-Urémico/etiología , Humanos , Masculino , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Microangiopatías Trombóticas/sangre , Microangiopatías Trombóticas/genética , Microangiopatías Trombóticas/inmunología , Adulto Joven
8.
Am J Hum Genet ; 88(2): 127-37, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21255762

RESUMEN

By using homozygosity mapping in a consanguineous Pakistani family, we detected linkage of nonsyndromic hearing loss to a 7.6 Mb region on chromosome 3q13.31-q21.1 within the previously reported DFNB42 locus. Subsequent candidate gene sequencing identified a homozygous nonsense mutation (c.1135G>T [p.Glu379X]) in ILDR1 as the cause of hearing impairment. By analyzing additional consanguineous families with homozygosity at this locus, we detected ILDR1 mutations in the affected individuals of 10 more families from Pakistan and Iran. The identified ILDR1 variants include missense, nonsense, frameshift, and splice-site mutations as well as a start codon mutation in the family that originally defined the DFNB42 locus. ILDR1 encodes the evolutionarily conserved immunoglobulin-like domain containing receptor 1, a putative transmembrane receptor of unknown function. In situ hybridization detected expression of Ildr1, the murine ortholog, early in development in the vestibule and in hair cells and supporting cells of the cochlea. Expression in hair cell- and supporting cell-containing neurosensory organs is conserved in the zebrafish, in which the ildr1 ortholog is prominently expressed in the developing ear and neuromasts of the lateral line. These data identify loss-of-function mutations of ILDR1, a gene with a conserved expression pattern pointing to a conserved function in hearing in vertebrates, as underlying nonsyndromic prelingual sensorineural hearing impairment.


Asunto(s)
Codón sin Sentido/genética , Genes Recesivos/genética , Predisposición Genética a la Enfermedad , Pérdida Auditiva/genética , Receptores de Superficie Celular/genética , Animales , Mapeo Cromosómico , Cromosomas Humanos Par 3/genética , Consanguinidad , Oído Interno , Femenino , Ligamiento Genético , Genotipo , Humanos , Hibridación in Situ , Escala de Lod , Masculino , Ratones , Linaje , Pez Cebra
9.
J Am Soc Nephrol ; 24(11): 1820-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23907509

RESUMEN

Dense deposit disease (DDD) and C3 glomerulonephritis (C3GN) are widely recognized subtypes of C3 glomerulopathy. These ultra-rare renal diseases are characterized by fluid-phase dysregulation of the alternative complement pathway that leads to deposition of complement proteins in the renal glomerulus. Disease triggers are unknown and because targeted treatments are lacking, progress to end stage renal failure is a common final outcome. We studied soluble CR1, a potent regulator of complement activity, to test whether it restores complement regulation in C3 glomerulopathy. In vitro studies using sera from patients with DDD showed that soluble CR1 prevents dysregulation of the alternative pathway C3 convertase, even in the presence of C3 nephritic factors. In mice deficient in complement factor H and transgenic for human CR1, soluble CR1 therapy stopped alternative pathway activation, resulting in normalization of serum C3 levels and clearance of iC3b from glomerular basement membranes. Short-term use of soluble CR1 in a pediatric patient with end stage renal failure demonstrated its safety and ability to normalize activity of the terminal complement pathway. Overall, these data indicate that soluble CR1 re-establishes regulation of the alternative complement pathway and provide support for a limited trial to evaluate soluble CR1 as a treatment for DDD and C3GN.


Asunto(s)
Complemento C3/análisis , Glomerulonefritis Membranoproliferativa/tratamiento farmacológico , Receptores de Complemento 3b/uso terapéutico , Animales , Niño , Factor H de Complemento/fisiología , Vía Alternativa del Complemento , Glomerulonefritis Membranoproliferativa/inmunología , Humanos , Ratones
10.
Kidney Int Rep ; 9(2): 464-477, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38344720

RESUMEN

Introduction: C3 glomerulopathy (C3G) is an ultrarare renal disease characterized by deposition of complement component C3 in the glomerular basement membrane (GBM). Rare and novel genetic variation in complement genes and autoantibodies to complement proteins are commonly identified in the C3G population and thought to drive the underlying complement dysregulation that results in renal damage. However, disease heterogeneity and rarity make accurately defining characteristics of the C3G population difficult. Methods: Here, we present a retrospective analysis of the Molecular Otolaryngology and Renal Research Laboratories C3G cohort. This study integrated complement biomarker testing and in vitro tests of autoantibody function to achieve the following 3 primary goals: (i) define disease profiles of C3G based on disease drivers, complement biomarkers, and age; (ii) determine the relationship between in vitro autoantibody tests and in vivo complement dysregulation; and (iii) evaluate the association between autoantibody function and disease progression. Results: The largest disease profiles of C3G included patients with autoantibodies to complement proteins (48%) and patients for whom no genetic and/or acquired drivers of disease could be identified (43%). The correlation between the stabilization of convertases by complement autoantibodies as measured by in vitro modified hemolytic assays and systemic biomarkers that reflect in vivo complement dysregulation was remarkably strong. In patients positive for autoantibodies, the degree of stabilization capacity predicted worse renal function. Conclusion: This study implicates complement autoantibodies as robust drivers of systemic complement dysregulation in approximately 50% of C3G but also highlights the need for continued discovery-based research to identify novel drivers of disease.

11.
Kidney Int ; 83(2): 293-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23235567

RESUMEN

Postinfectious glomerulonephritis is a common disorder that develops following an infection. In the majority of cases, there is complete recovery of renal function within a few days to weeks following resolution of the infection. In a small percentage of patients, however, the glomerulonephritis takes longer to resolve, resulting in persistent hematuria and proteinuria, or even progression to end-stage kidney disease. In some cases of persistent hematuria and proteinuria, kidney biopsies show findings of a postinfectious glomerulonephritis even in the absence of any evidence of a preceding infection. The cause of such 'atypical' postinfectious glomerulonephritis, with or without evidence of preceding infection, is unknown. Here we show that most patients diagnosed with this 'atypical' postinfectious glomerulonephritis have an underlying defect in the regulation of the alternative pathway of complement. These defects include mutations in complement-regulating proteins and antibodies to the C3 convertase known as C3 nephritic factors. As a result, the activated alternative pathway is not brought under control even after resolution of the infection. Hence, the sequela is continual glomerular deposition of complement factors with resultant inflammation and development of an 'atypical' postinfectious glomerulonephritis.


Asunto(s)
Vía Alternativa del Complemento , Glomerulonefritis/inmunología , Infecciones/complicaciones , Adolescente , Adulto , Anciano , Biopsia , Convertasas de Complemento C3-C5/fisiología , Femenino , Glomerulonefritis/tratamiento farmacológico , Glomerulonefritis/etiología , Glomerulonefritis/patología , Humanos , Riñón/patología , Masculino , Persona de Mediana Edad
12.
Pediatr Nephrol ; 28(11): 2221-5, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23880784

RESUMEN

BACKGROUND: Mutations in complement factor H (CFH) are associated with complement dysregulation and the development of an aggressive form of atypical hemolytic uremic syndrome (aHUS) that progresses to end-stage renal disease (ESRD) and in most patients has a high rate of recurrence following transplantation. Sequence analysis of CFH and its downstream complement factor H-related genes (CFHR1-5) reveals several macrohomologous blocks caused by large genomic duplications. This high degree of sequence identity renders this area susceptible to nonallelic homologous recombination (NAHR) events, resulting in large-scale deletions, duplications, and the generation of hybrid CFH genes. CASE-DIAGNOSIS: Here, we report the finding of a novel CFHR1/CFH hybrid gene created by a de novo NAHR event in a 14-year-old girl with aHUS. The resulting fusion protein contains the first three short consensus repeats (SCRs) of CFHR1 and the terminal two SCRs of CFH. CONCLUSIONS: This finding demonstrates a novel pathogenic mechanism for the development of aHUS. Additionally, since standard Sanger sequencing is unable to detect such rearrangements, all aHUS patients should receive comprehensive genetic screening that includes analysis of copy number variation in order to identify patients with poor clinical prognoses.


Asunto(s)
Proteínas Inactivadoras del Complemento C3b/genética , Factor H de Complemento/genética , Síndrome Hemolítico-Urémico/genética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Autoanticuerpos/análisis , Western Blotting , Niño , Creatinina/sangre , ADN/genética , Femenino , Amplificación de Genes , Humanos , Inmunosupresores/uso terapéutico , Trasplante de Riñón , Reacción en Cadena de la Polimerasa , Diálisis Renal
13.
Am J Hum Genet ; 84(4): 505-10, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19344877

RESUMEN

Male infertility, a common barrier that prevents successful conception, is a reproductive difficulty affecting 15% of couples. Heritable forms of nonsyndromic male infertility can arise from single-gene defects as well as chromosomal abnormalities. Although no CATSPER gene has been identified as causative for human male infertility, male mice deficient for members of the CatSper gene family are infertile. In this study, we used routine semen analysis to identify two consanguineous Iranian families segregating autosomal-recessive male infertility. Autozygosity by descent was demonstrated in both families for a approximately 11 cM region on chromosome 11q13.1, flanked by markers D11S1765 and D11S4139. This region contains the human CATSPER1 gene. Denaturing high-performance liquid chromatography (DHPLC) and bidirectional sequence analysis of CATSPER1 in affected family members revealed two separate insertion mutations (c.539-540insT and c.948-949insATGGC) that are predicted to lead to frameshifts and premature stop codons (p.Lys180LysfsX8 and p.Asp317MetfsX18). CATSPER1 is one of four members of the sperm-specific CATSPER voltage-gated calcium channel family known to be essential for normal male fertility in mice. These results suggest that CATSPER1 is also essential for normal male fertility in humans.


Asunto(s)
Canales de Calcio/genética , Infertilidad Masculina/genética , Mutación , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Canales de Calcio/deficiencia , Mapeo Cromosómico , Cromosomas Humanos Par 11/genética , Consanguinidad , ADN/genética , Análisis Mutacional de ADN , Modelos Animales de Enfermedad , Femenino , Genes Recesivos , Humanos , Irán , Escala de Lod , Masculino , Ratones , Mutagénesis Insercional , Linaje
14.
Front Immunol ; 13: 1073802, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36846022

RESUMEN

Introduction: C3 glomerulopathies (C3G) are ultra-rare complement-mediated diseases that lead to end-stage renal disease (ESRD) within 10 years of diagnosis in ~50% of patients. Overactivation of the alternative pathway (AP) of complement in the fluid phase and on the surface of the glomerular endothelial glycomatrix is the underlying cause of C3G. Although there are animal models for C3G that focus on genetic drivers of disease, in vivo studies of the impact of acquired drivers are not yet possible. Methods: Here we present an in vitro model of AP activation and regulation on a glycomatrix surface. We use an extracellular matrix substitute (MaxGel) as a base upon which we reconstitute AP C3 convertase. We validated this method using properdin and Factor H (FH) and then assessed the effects of genetic and acquired drivers of C3G on C3 convertase. Results: We show that C3 convertase readily forms on MaxGel and that this formation was positively regulated by properdin and negatively regulated by FH. Additionally, Factor B (FB) and FH mutants impaired complement regulation when compared to wild type counterparts. We also show the effects of C3 nephritic factors (C3Nefs) on convertase stability over time and provide evidence for a novel mechanism of C3Nef-mediated C3G pathogenesis. Discussion: We conclude that this ECM-based model of C3G offers a replicable method by which to evaluate the variable activity of the complement system in C3G, thereby offering an improved understanding of the different factors driving this disease process.


Asunto(s)
Complemento C3 , Enfermedades Renales , Animales , Complemento C3/genética , Complemento C3/metabolismo , Vía Alternativa del Complemento/genética , Properdina/genética , Properdina/metabolismo , Convertasas de Complemento C3-C5/metabolismo , Factor Nefrítico del Complemento 3/metabolismo , Matriz Extracelular/metabolismo
15.
Front Immunol ; 13: 866330, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619721

RESUMEN

C3 glomerulopathy (C3G) and atypical hemolytic uremic syndrome (aHUS) are two rare diseases caused by dysregulated activity of the alternative pathway of complement secondary to the presence of genetic and/or acquired factors. Complement factor I (FI) is a serine protease that downregulates complement activity in the fluid phase and/or on cell surfaces in conjunction with one of its cofactors, factor H (FH), complement receptor 1 (CR1/CD35), C4 binding protein (C4BP) or membrane cofactor protein (MCP/CD46). Because altered FI activity is causally related to the pathogenesis of C3G and aHUS, we sought to test functional activity of select CFI missense variants in these two patient cohorts. We identified 65 patients (16, C3G; 48, aHUS; 1 with both) with at least one rare variant in CFI (defined as a MAF < 0.1%). Eight C3G and eleven aHUS patients also carried rare variants in either another complement gene, ADAMTS13 or THBD. We performed comprehensive complement analyses including biomarker profiling, pathway activity and autoantibody testing, and developed a novel FI functional assay, which we completed on 40 patients. Seventy-eight percent of rare CFI variants (31/40) were associated with FI protein levels below the 25th percentile; in 22 cases, FI levels were below the lower limit of normal (type 1 variants). Of the remaining nine variants, which associated with normal FI levels, two variants reduced FI activity (type 2 variants). No patients carried currently known autoantibodies (including FH autoantibodies and nephritic factors). We noted that while rare variants in CFI predispose to complement-mediated diseases, phenotypes are strongly contingent on the associated genetic background. As a general rule, in isolation, a rare CFI variant most frequently leads to aHUS, with the co-inheritance of a CD46 loss-of-function variant driving the onset of aHUS to the younger age group. In comparison, co-inheritance of a gain-of-function variant in C3 alters the phenotype to C3G. Defects in CFH (variants or fusion genes) are seen with both C3G and aHUS. This variability underscores the complexity and multifactorial nature of these two complement-mediated renal diseases.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Factor I de Complemento , Síndrome Hemolítico Urémico Atípico/genética , Autoanticuerpos/genética , Factor I de Complemento/genética , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Humanos , Fenotipo
16.
Hum Mutat ; 32(7): 825-34, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21520338

RESUMEN

The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian, and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably, 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the α-tectorin protein, including those for the first time identified in the entactin domain, as well as the vWFD1, vWFD2, and vWFD3 repeats, and the D1-D2 and TIL2 connectors. Although the majority are private mutations, four of them-p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met, and p.Arg1890Cys-were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of α-tectorin (entactin domain, vWFD1, and vWFD2) lead to mid-frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Pérdida Auditiva Sensorineural/genética , Adolescente , Adulto , Anciano , Audiometría/métodos , Niño , Preescolar , Femenino , Efecto Fundador , Proteínas Ligadas a GPI/genética , Estudios de Asociación Genética , Ligamiento Genético , Haplotipos , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Estructura Terciaria de Proteína/genética
17.
Am J Med Genet A ; 155A(5): 1202-11, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21484990

RESUMEN

Mutations in GJB2, encoding connexin 26 (Cx26), cause both autosomal dominant and autosomal recessive nonsyndromic hearing loss (ARNSHL) at the DFNA3 and DFNB1 loci, respectively. Most of the over 100 described GJB2 mutations cause ARNSHL. Only a minority has been associated with autosomal dominant hearing loss. In this study, we present two families with autosomal dominant nonsyndromic hearing loss caused by a novel mutation in GJB2 (p.Asp46Asn). Both families were ascertained from the same village in northern Iran consistent with a founder effect. This finding implicates the D46N missense mutation in Cx26 as a common cause of deafness in this part of Iran mandating mutation screening of GJB2 for D46N in all persons with hearing loss who originate from this geographic region.


Asunto(s)
Conexinas/genética , Genes Dominantes , Pérdida Auditiva/genética , Mutación , Conexina 26 , Humanos , Irán
18.
Nephrol Dial Transplant ; 26(2): 739-41, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20974643

RESUMEN

Atypical hemolytic uremic syndrome (aHUS) is a complex complement-mediated disease that progresses to end-stage renal failure (ESRF) in 50% of cases. Dysregulation of the alternative pathway (AP) of the complement cascade manifests as microangiopathic anaemia and thrombocytopenia. Multiple genes in the AP have been implicated in disease pathogenesis. Here, we report the clinical presentation of an affected patient that was inconsistent with genotype-phenotype data for carriers of CD46 mutations. Tests of AP function in this patient suggested additional genetic factors, and in-depth studies revealed a de novo heterozygous deletion that creates a novel CFH/CFHR1 fusion protein.


Asunto(s)
Proteínas Inactivadoras del Complemento C3b/genética , Síndrome Hemolítico Urémico Atípico , Síndrome Hemolítico-Urémico/genética , Humanos , Lactante , Masculino , Proteína Cofactora de Membrana , Familia de Multigenes/genética , Eliminación de Secuencia
19.
Hum Genet ; 127(2): 155-62, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19847460

RESUMEN

Otosclerosis is a common form of hearing loss characterized by abnormal bone remodeling in the otic capsule. It is considered a complex disease caused by both genetic and environmental factors. In a previous study, we identified a region on chr7q22.1 located in the RELN gene that is associated with otosclerosis in Belgian-Dutch and French populations. Evidence for allelic heterogeneity was found in this chromosomal region in the form of two independent signals. To confirm this finding, we have completed a replication study that includes four additional populations from Europe (1,141 total samples). Several SNPs in this region replicated in these populations separately. While the power to detect significant association in each population is small, when all four populations are combined, six of seven SNPs replicate and show an effect in the same direction as in the previous populations. We also confirmed the presence of allelic heterogeneity in this region. These data further implicate RELN in the pathogenesis of otosclerosis. Functional research is warranted to determine the pathways through which RELN acts in the pathogenesis of otosclerosis.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Proteínas de la Matriz Extracelular/genética , Proteínas del Tejido Nervioso/genética , Otosclerosis/genética , Polimorfismo de Nucleótido Simple , Serina Endopeptidasas/genética , Femenino , Frecuencia de los Genes , Heterogeneidad Genética , Genotipo , Alemania , Pruebas Auditivas , Humanos , Italia , Desequilibrio de Ligamiento , Modelos Logísticos , Masculino , Metaanálisis como Asunto , Otosclerosis/diagnóstico , Proteína Reelina , Rumanía , Suiza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA