Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Ecotoxicol Environ Saf ; 279: 116493, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38805825

RESUMEN

Strobilurins, among the most used fungicides worldwide, are considered non-toxic to mammals and birds, but there is growing evidence that these compounds are highly toxic to aquatic species. Dimoxystrobin has been included in the 3rd Watch List of the European Commission, and it has been classified as very toxic to aquatic life. However, previous studies focused on acute toxicity and only two reports are available on its impact on fish, and none on its effects during the early life stages. Here, we evaluated for the first time the effects induced on zebrafish embryos and larvae by two dimoxystrobin sublethal concentrations (6.56 and 13.13 µg/L) falling in the range of predicted environmental concentrations. We demonstrated that short-term exposure to dimoxystrobin may exert adverse effects on multiple targets, inducing severe morphological alterations. Moreover, we showed enhanced mRNA levels of genes related to the mitochondrial respiratory chain and ATP production. Impairment of the swim bladder inflation has also been recorded, which may be related to the observed swimming performance alterations.


Asunto(s)
Embrión no Mamífero , Fungicidas Industriales , Larva , Mitocondrias , Estrobilurinas , Contaminantes Químicos del Agua , Pez Cebra , Animales , Fungicidas Industriales/toxicidad , Larva/efectos de los fármacos , Estrobilurinas/toxicidad , Mitocondrias/efectos de los fármacos , Embrión no Mamífero/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Natación , Sacos Aéreos/efectos de los fármacos , Conducta Animal/efectos de los fármacos
2.
Mol Phylogenet Evol ; 178: 107635, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36208694

RESUMEN

Most of the unique and diverse vertebrate fauna that inhabits Madagascar derives from in situ diversification from colonisers that reached this continental island through overseas dispersal. The endemic Malagasy Scincinae lizards are amongst the most species-rich squamate groups on the island. They colonised all bioclimatic zones and display many ecomorphological adaptations to a fossorial (burrowing) lifestyle. Here we propose a new phylogenetic hypothesis for their diversification based on the largest taxon sampling so far compiled for this group. We estimated divergence times and investigated several aspects of their diversification (diversification rate, body size and fossorial lifestyle evolution, and biogeography). We found that diversification rate was constant throughout most of the evolutionary history of the group, but decreased over the last 6-4 million years and independently from body size and fossorial lifestyle evolution. Fossoriality has evolved from fully quadrupedal ancestors at least five times independently, which demonstrates that even complex morphological syndromes - in this case involving traits such as limb regression, body elongation, modification of cephalic scalation, depigmentation, and eyes and ear-opening regression - can evolve repeatedly and independently given enough time and eco-evolutionary advantages. Initial diversification of the group likely occurred in forests, and the divergence of sand-swimmer genera around 20 Ma appears linked to a period of aridification. Our results show that the large phenotypic variability of Malagasy Scincinae has not influenced diversification rate and that their rich species diversity results from a constant accumulation of lineages through time. By compiling large geographic and trait-related datasets together with the computation of a new time tree for the group, our study contributes important insights on the diversification of Malagasy vertebrates.


Asunto(s)
Lagartos , Animales , Filogenia , Serpientes , Tamaño Corporal , Madagascar
3.
Int J Mol Sci ; 23(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36012426

RESUMEN

Lead (Pb), due to its high toxicity and bioaccumulation tendency, is one of the top three pollutants of concern for both humans and wildlife and occupies second place in the Priority List of Hazardous Substances. In freshwater fish, Pb is mainly absorbed through the gills, where the greatest accumulation occurs. Despite the crucial role of gills in several physiological functions such as gas exchange, water balance, and osmoregulation, no studies evaluated the effects of environmentally relevant concentrations of Pb on this organ, and existing literature only refers to high levels of exposure. Herein we investigated for the first time the molecular and morphological effects induced by two low and environmentally relevant concentrations of Pb (2.5 and 5 µg/L) on the gills of Danio rerio, a model species with a high translational value for human toxicity. It was demonstrated that Pb administration at even low doses induces osmoregulatory dysfunctions by affecting Na+/K+-ATPase and AQP3 expression. It was also shown that Pb upregulates MTs as a protective response to prevent cell damage. Modulation of SOD confirms that the production of reactive oxygen species is an important toxicity mechanism of Pb. Histological and morphometric analysis revealed conspicuous pathological changes, both dose- and time-dependent.


Asunto(s)
Branquias , Contaminantes Químicos del Agua , Animales , Agua Dulce , Branquias/metabolismo , Humanos , Plomo/farmacología , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/metabolismo
4.
Cytogenet Genome Res ; 157(1-2): 65-76, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30836364

RESUMEN

The common lizard (Zootoca vivipara) displays characteristic cytogenetic, reproductive, molecular, and biogeographic variability. This species comprises oviparous and viviparous populations with disjunct distribution and sex chromosome polymorphisms, from simple ZZ/ZW to complex Z1Z1Z2Z2/Z1Z2W systems with different morphologies of the W chromosome. In this study, we used the primers SINE A and SINE B and a newly designed primer pair to (1) obtain information on the presence and distribution of transposable elements (TEs) in 8 squamate families and (2) assess the chromosomal location of SINE Squam elements in Z. vivipara. PCR amplification with SINE A and SINE B produced single or multiple products in different Z. vivipara populations, subsequently used to design the SINE-Zv primers. Using the newly designed SINE-Zv primers, we identified 2 sequences of about 700 and 300 bp (SINE-Zv 700 and SINE-Zv 300) in all the investigated populations of Z. vivipara. Fluorescence in situ hybridizations showed a preferential localization of SINE-Zv sequences in the peritelomeric regions of almost all chromosomes, with the exception of the W. Both sequences contained a distinct segment of SINE Squam2. SINE-Zv 700 appeared to be restricted to Z. vivipara, while SINE-Zv 300 contained a partial Gypsy sequence that is highly conserved among Squamata and showed high identity values (72-93%) with several transcripts from different species. Using the same primers, we also highlighted the presence of another highly conserved Gypsy-like fragment in snakes which displayed significant similarity with the stomatin-like protein 2 of colubrids. Our results suggest that SINEs and the Gypsy-like elements are widely distributed among squamates and may have played an active role in their genomic evolution and differentiation.


Asunto(s)
Elementos Transponibles de ADN/genética , Lagartos/genética , Reptiles/genética , Cromosomas Sexuales/genética , Elementos de Nucleótido Esparcido Corto/genética , Animales , Secuencia de Bases , Evolución Molecular , Femenino , Hibridación Fluorescente in Situ , Lagartos/clasificación , Masculino , Filogenia , Reptiles/clasificación , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
5.
Ann Hum Biol ; 46(5): 388-392, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31274338

RESUMEN

Background: Endemic fluorosis induced by high concentrations of fluoride in groundwater and soils is a major health problem in several countries, particularly in volcanic areas.Aim: To evaluate the occurrence of dental fluorosis resulting from exposure to high levels of environmental fluoride in 79 AD Herculaneum and close Vesuvius towns.Subjects and methods: The occurrence of dental fluorosis from teeth of the Herculaneum victims of the 79 AD eruption and some individuals from Pompeii (14-37 AD) and Nocera Inferiore (Salerno, IV sec. AD) was detected by means of Particle Induced Gamma-ray Emission technique (PIGE).Results: A clinical and analytical scenario of dental fluorosis resulted from the extreme high fluorine tooth content detected in teeth from Herculaneum and the Vesuvius area inhabitants. The adoption of PIGE technique has proved to be particularly effective in showing moderate as well as milder forms of dental fluorosis, otherwise not clearly detectable by clinical and histological analysis.Conclusions: Morphological, histological and elemental analysis of teeth of the 79 AD Herculaneum population show that in this area fluorosis occurred since Roman times.


Asunto(s)
Fluorosis Dental/historia , Diente/química , Fluorosis Dental/etiología , Historia Antigua , Humanos , Italia , Persona de Mediana Edad , Erupciones Volcánicas/historia
6.
J Exp Zool B Mol Dev Evol ; 328(4): 360-370, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28317246

RESUMEN

Sexual differentiation (SD) during development results in anatomical, metabolic, and physiological differences that involve not only the gonads, but also a variety of other biological structures, such as the brain, determining differences in morphology, behavior, and response in the breeding season. In many reptiles, whose sex is determined by egg incubation temperature, such as the leopard gecko, Eublepharis macularius, embryos incubated at different temperatures clearly differ in the volume of brain nuclei that modulate behavior. Based on the premise that "the developmental decision of gender does not flow through a single gene", we performed an analysis on E. macularius using three approaches to gain insights into the genes that may be involved in brain SD during the thermosensitive period. Using quantitative RT-PCR, we studied the expression of genes known to be involved in gonadal SD such as WNT4, SOX9, DMRT1, Erα, Erß, GnRH, P450 aromatase, PRL, and PRL-R. Then, further genes putatively involved in sex dimorphic brain differentiation were sought by differential display (DDRT-PCR) and PCR array. Our findings indicate that embryo exposure to different sex determining temperatures induces differential expression of several genes that are involved not only in gonadal differentiation (PRL-R, Wnt4, Erα, Erß, p450 aromatase, and DMRT1), but also in neural differentiation (TN-R, Adora2A, and ASCL1) and metabolic pathways (GP1, RPS15, and NADH12). These data suggest that the brains of SDT reptiles might be dimorphic at birth, thus behavioral experiences in postnatal development would act on a structure already committed to male or female.


Asunto(s)
Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Lagartos/metabolismo , Procesos de Determinación del Sexo/fisiología , Animales , Femenino , Gónadas/fisiología , Masculino , Reacción en Cadena de la Polimerasa , Embarazo , Efectos Tardíos de la Exposición Prenatal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Temperatura
7.
Life (Basel) ; 14(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38398689

RESUMEN

This contribution provides the first karyotype description of Hemidactylus mercatorius and discusses the interspecific chromosome diversification in the genus. Chromosomal analysis was performed on samples from different Malagasy populations using standard karyotyping, Ag-NOR staining, and banding methods (sequential C-banding + Giemsa, + Chromomycin A3, +4',6-diamidino-2-phenylindole). Irrespective of sex or sampling locality, H. mercatorius shows a karyotype of 2n = 42 with metacentric (1, 18-21), submetacentric (4), subtelocentric (5, 11), and acrocentric pairs (all the remaining pairs). There was no heteromorphic chromosome pair and no clear distinction between macro- and microchromosomes. NORs were localised close to the centromeres of a medium acrocentric pair (14). Heterochromatic blocks were identified on the telomeric and centromeric regions of most chromosome pairs. A comparison with the karyotype of H. mabouia highlights that the different morphology of several chromosome pairs clearly distinguishes the two species, contrasting the previously proposed synonymy. The differences between the karyotypes of H. mercatorius and H. mabouia concern the number of biarmed and acrocentric elements, suggesting the occurrence of several chromosome inversions. Considering all the available karyotype data on Hemidactylus and its sister genus Cyrtodactylus, it is possible to advance an evolutionary hypothesis on their chromosomal evolution, starting from a common ancestor with 2n = 48 and all acrocentric elements. From this ancestral condition, the karyotype diversification in the two genera has been prevalently characterised by a progressive accumulation of fusions and inversions which have reduced the total chromosome count and increased the number of biarmed chromosomes.

8.
Animals (Basel) ; 14(19)2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39409767

RESUMEN

In this work, we performed a preliminary molecular analysis and a comparative cytogenetic study on 5 different species of Malagasy chameleons of the genus Brookesia (B. superciliaris) and Furcifer (F. balteautus, F. petteri, F. major and F. minor). A DNA barcoding analysis was first carried out on the study samples using a fragment of the mitochondrial gene coding for the cytochrome oxidase subunit 1 (COI) in order to assess the taxonomic identity of the available biological material. Subsequently, we performed on the studied individuals a chromosome analysis with standard karyotyping (5% Giemsa solution at pH 7) and sequential C-banding + Giemsa, + CMA3, and + DAPI. The results obtained indicate that the studied species are characterized by a different chromosome number and a variable heterochromatin content and distribution, with or without differentiated sex chromosomes. In particular, B. superciliaris (2n = 36) and F. balteatus (2n = 34) showed a similar karyotype with 6 macro- and 12-11 microchromosome pairs, without differentiated sex chromosomes. In turn, F. petteri, F. major, and F. minor showed a karyotype with a reduced chromosome number (2n = 22-24) and a differentiated sex chromosome system with female heterogamety (ZZ/ZW). Adding our newly generated data to those available from the literature, we highlight that the remarkable chromosomal diversification of the genus Furcifer was likely driven by non-homologous chromosome fusions, including autosome-autosome, Z-autosome, and W-autosome fusions. The results of this process resulted in a progressive reduction in the chromosome number and partially homologous sex chromosomes of different shapes and sizes.

9.
Animals (Basel) ; 14(11)2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38891755

RESUMEN

We present a comparative chromosome study of several taxa of the Malagasy ground geckos of the Paroedura bastardi and P. picta species groups. We employed a preliminary molecular analysis using a trait of the mitochondrial 16S rRNA gene (of about 570 bp) to assess the taxonomic status of the samples studied and a cytogenetic analysis with standard karyotyping (5% Giemsa solution), silver staining (Ag-NOR staining) and sequential C-banding (C-banding + Giemsa and + fluorochromes). Our results show that all the taxa studied of the P. bastardi group (P. ibityensis, P. rennerae and P. cf. guibeae) have a similar karyotype composed of 2n = 34 chromosomes, with two metacentric pairs (1 and 3) and all other pairs being acrocentric. Chromosome diversification in the P. bastardi group was mainly linked to the diversification of heteromorphic sex chromosome systems (ZZ/ZW) in P. ibityensis and P. rennerae, while no heteromorphic sex chromosome pair was found in P. cf. guibeae. The two taxa investigated of the P. picta species group (here named P. picta and P. cf. picta based on molecular data) showed the same chromosome number of 2n = 36, mostly acrocentric elements, but differed in the number of metacentric elements, probably as a result of an inversion at chromosome pair 2. We highlight that the genus Paroedura is characterized by the independent diversification of heterogametic sex chromosomes in different evolutionary lineages and, similarly to other phylogenetically related gecko genera, by a progressive formation of a biarmed element by means of tandem fusions and inversions of distinct pairs.

10.
Genes (Basel) ; 15(3)2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38540430

RESUMEN

Karyotype diversification represents an important, yet poorly understood, driver of evolution. Squamate reptiles are characterized by a high taxonomic diversity which is reflected at the karyotype level in terms of general structure, chromosome number and morphology, and insurgence of differentiated simple or multiple-sex-chromosome systems with either male or female heterogamety. The potential of squamate reptiles as unique model organisms in evolutionary cytogenetics has been recognised in recent years in several studies, which have provided novel insights into the chromosome evolutionary dynamics of different taxonomic groups. Here, we review and summarize the resulting complex, but promising, general picture from a systematic perspective, mapping some of the main squamate karyological characteristics onto their phylogenetic relationships. We highlight how all the major categories of balanced chromosome rearrangements contributed to the karyotype evolution in different taxonomic groups. We show that distinct karyotype evolutionary trends may occur, and coexist, with different frequencies in different clades. Finally, in light of the known squamate chromosome diversity and recent research advances, we discuss traditional and novel hypotheses on karyotype evolution and propose a scenario of circular karyotype evolution.


Asunto(s)
Reptiles , Cromosomas Sexuales , Animales , Femenino , Masculino , Filogenia , Reptiles/genética , Cariotipo , Cariotipificación , Cromosomas Sexuales/genética
11.
Animals (Basel) ; 13(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36978574

RESUMEN

True polyploid organisms have more than two chromosome sets in their somatic and germline cells. Polyploidy is a major evolutionary force and has played a significant role in the early genomic evolution of plants, different invertebrate taxa, chordates, and teleosts. However, the contribution of polyploidy to the generation of new genomic, ecological, and species diversity in tetrapods has traditionally been underestimated. Indeed, polyploidy represents an important pathway of genomic evolution, occurring in most higher-taxa tetrapods and displaying a variety of different forms, genomic configurations, and biological implications. Herein, we report and discuss the available information on the different origins and evolutionary and ecological significance of true polyploidy in tetrapods. Among the main tetrapod lineages, modern amphibians have an unparalleled diversity of polyploids and, until recently, they were considered to be the only vertebrates with closely related diploid and polyploid bisexual species or populations. In reptiles, polyploidy was thought to be restricted to squamates and associated with parthenogenesis. In birds and mammals, true polyploidy has generally been considered absent (non-tolerated). These views are being changed due to an accumulation of new data, and the impact as well as the different evolutionary and ecological implications of polyploidy in tetrapods, deserve a broader evaluation.

12.
Animals (Basel) ; 13(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37443866

RESUMEN

We performed a molecular and phylogenetic analysis and a comparative cytogenetic study with standard karyotyping, silver staining (Ag-NOR) and sequential C-banding + Giemsa, + fluorochromes on several Blaesodactylus samples. The phylogenetic inference retrieved two main clades, the first comprises B. victori, B. microtuberculatus and B. boivini, while the second includes B. sakalava, B. antongilensis and B. ambonihazo. The available samples of B. sakalava form two different clades (here named B. sakalava clade A and clade B), which probably deserve a taxonomic re-evaluation. We found a karyological variability in Blaesodactylus in terms of chromosome number (2n = 40-42), morphology, location of NORs, and heterochromatin distribution pattern. Blaesodactylus antongilensis and B. sakalava clade A and B showed a karyotype of 2n = 40 mostly telocentric chromosomes. Pairs 1 and 6 were metacentric in B. sakalava clade A and B, while pair 1 was composed of subtelocentric/submetacentric elements in B. antongilensis. In contrast, B. boivini displayed a karyotype with 2n = 42 only telocentric chromosomes. NORs were on the first chromosome pair in B. boivini, and on the second pair in B. antongilensis. Adding our data to those available from the literature on evolutionarily related species, we highlight that the chromosome diversification in the genus probably proceeded towards a progressive reduction in the chromosome number and the formation of metacentric elements.

13.
Life (Basel) ; 13(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36983793

RESUMEN

Transposable elements (TEs) constitute a considerable fraction of eukaryote genomes representing a major source of genetic variability. We describe two DNA sequences isolated in the lizard Zootoca vivipara, here named Zv516 and Zv817. Both sequences are single-copy nuclear sequences, including a truncation of two transposable elements (TEs), SINE Squam1 in Zv516 and a Tc1/Mariner-like DNA transposon in Zv817. FISH analyses with Zv516 showed the occurrence of interspersed signals of the SINE Squam1 sequence on all chromosomes of Z. vivipara and quantitative dot blot indicated that this TE is present with about 4700 copies in the Z. vivipara genome. FISH and dot blot with Zv817 did not produce clear hybridization signals. Bioinformatic analysis showed the presence of active SINE Squam 1 copies in the genome of different lacertids, in different mRNAs, and intronic and coding regions of various genes. The Tc1/Mariner-like DNA transposon occurs in all reptiles, excluding Sphenodon and Archosauria. Zv817 includes a trait of 284 bp, representing an amniote ultra-conserved element (UCE). Using amniote UCE homologous sequences from available whole genome sequences of major amniote taxonomic groups, we performed a phylogenetic analysis which retrieved Prototheria as the sister group of Metatheria and Eutheria. Within diapsids, Testudines are the sister group to Aves + Crocodylia (Archosauria), and Sphenodon is the sister group to Squamata. Furthermore, large trait regions flanking the UCE are conserved at family level.

14.
Evolution ; 77(9): 1930-1944, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37288542

RESUMEN

Evolutionary shifts in chromosome compositions (karyotypes) are major drivers of lineage and genomic diversification. Fusion of ancestral chromosomes is one hypothesized mechanism for the evolutionary reduction of the total chromosome number, a frequently implied karyotypic shift. Empirical tests of this hypothesis require model systems with variable karyotypes, known chromosome features, and a robust phylogeny. Here we used chameleons, diverse lizards with exceptionally variable karyotypes ($2n=20\text{-}62$), to test whether chromosomal fusions explain the repeated evolution of karyotypes with fewer chromosomes than ancestral karyotypes. Using a multidisciplinary approach including cytogenetic analyses and phylogenetic comparative methods, we found that a model of constant loss through time best explained chromosome evolution across the chameleon phylogeny. Next, we tested whether fusions of microchromosomes into macrochromosomes explained these evolutionary losses using generalized linear models. Multiple comparisons supported microchromosome fusions as the predominant agent of evolutionary loss. We further compared our results to various natural history traits and found no correlations. As such, we infer that the tendency of microchromosomes to fuse was a quality of the ancestral chameleon genome and that the genomic predisposition of ancestors is a more substantive predictor of chromosome change than the ecological, physiological, and biogeographical factors involved in their diversification.


Asunto(s)
Evolución Molecular , Genoma , Cariotipo , Cariotipificación , Filogenia
15.
Chemosphere ; 333: 138914, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37187376

RESUMEN

Strobilurins represent the most widely used class of fungicides nowadays andare considered relatively non-toxic to mammals and birds but highly toxic to aquatic biota. Dimoxystrobin is one of the novel strobilurins, recently included in the 3rd Watch List of the European Commission as available data indicate that it could pose a significant risk to aquatic species. As yet, the number of studies explicitly assessing the impact of this fungicide on terrestrial and aquatic species is extremely low, and the toxic effects of dimoxystrobin on fish have not been reported. Here we investigate for the first time the alterations induced by two environmentally relevant and very low concentrations of dimoxystrobin (6.56 and 13.13 µg/L) in the fish gills. morphological, morphometric, ultrastructural, and functional alterations have been evaluated using zebrafish as a model species. We demonstrated that even short-term exposure (96 h) to dimoxystrobin alters fish gills reducing the surface available for gas exchange and inducing severe alterations encompassing three reaction patterns: circulatory disturbance and both regressive and progressive changes. Furthermore, we revealed that this fungicide impairs the expression of key enzymes involved in osmotic and acid-base regulation (Na+/K+-ATPase and AQP3) and the defensive response against oxidative stress (SOD and CAT). The information presented here highlights the importance of combining data from different analytical methods for evaluating the toxic potential of currently used and new agrochemical compounds. Our results will also contribute to the discussion on the suitability of mandatory ecotoxicological tests on vertebrates before the introduction on the market of new compounds.


Asunto(s)
Fungicidas Industriales , Contaminantes Químicos del Agua , Animales , Fungicidas Industriales/metabolismo , Estrobilurinas/farmacología , Pez Cebra/metabolismo , Branquias/metabolismo , Contaminantes Químicos del Agua/análisis , Mamíferos
16.
Animals (Basel) ; 13(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37443897

RESUMEN

We analyzed the body length, age structure, and age at sexual maturity of the invasive Asian common toad Duttaphrynus melanostictus from different sites in Toamasina, east Madagascar. We used skeletochronology as a proxy for age estimation, while gonads were histologically analyzed to determine the age of sexual maturity. The analysis of pooled age data from three sites investigated in 2016 showed that both sexes were larger, although not older, than those of native populations. For the individuals from Madagascar, the males were significantly smaller and younger (mean ± SD, SVL: 71.4 ± 1.6 mm; age: 1.8 ± 0.7 years) than the females (SVL: 78.42 ± 1.9 mm; age: 2.7 ± 1.3 years), when the data were pooled, but when the data were analyzed separately for each of the three sites, similar results were obtained only for one site. The oldest recorded male and female were 3 and 6 years old, respectively. Gonadal histology showed that the males and females reach sexual maturity after the first and second years of age, respectively. Further studies are needed to understand if the larger size and faster growth rates observed in the invasive population of D. melanostictus in Madagascar are a consequence of more favorable environmental conditions with respect to the native range (e.g., the availability of larger trophic niches, a lack of competitors, and lower predatory pressure), and we suggest to extend the monitoring of these life history traits to understand how they might influence the invasion.

17.
Animals (Basel) ; 12(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36009644

RESUMEN

We provide here the first karyotype description of eight Uroplatus species and a characterization of their chromosomal diversity. We performed a molecular taxonomic assessment of several Uroplatus samples using the mitochondrial 12S marker and a comparative cytogenetic analysis with standard karyotyping, silver staining (Ag-NOR) and sequential C-banding + Giemsa, +Chromomycin A3 (CMA3), +4',6-diamidino-2-phenylindole (DAPI). We found chromosomal variability in terms of chromosome number (2n = 34-38), heterochromatin composition and number and localization of loci or Nucleolar Organizer Regions (NORs) (alternatively on the 2nd, 6th, 10th or 16th pair). Chromosome morphology is almost constant, with karyotypes composed of acrocentric chromosomes, gradually decreasing in length. C-banding evidenced a general low content of heterochromatin, mostly localized on pericentromeric and telomeric regions. Centromeric bands varied among the species studied, resulting in CMA3 positive and DAPI negative or positive to both fluorochromes. We also provide evidence of a first putative heteromorphic sex chromosome system in the genus. In fact, in U. alluaudi the 10th pair was highly heteromorphic, with a metacentric, largely heterochromatic W chromosome, which was much bigger than the Z. We propose an evolutionary scenario of chromosome reduction from 2n = 38 to 2n = 34, by means of translocations of microchromosomes on larger chromosomes (often involving the NOR-bearing microchromosomes). Adding our data to those available from the literature, we show that similar processes characterized the evolutionary radiation of a larger gecko clade. Finally, we hypothesize that sex chromosome diversification occurred independently in different genera.

18.
Comp Cytogenet ; 16(1): 1-17, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35211250

RESUMEN

We performed a molecular and cytogenetic analysis on different Mantellinae species and revised the available chromosomal data on this group to provide an updated assessment of its karyological diversity and evolution. Using a fragment of the mitochondrial 16S rRNA, we performed a molecular taxonomic identification of the samples that were used for cytogenetic analyses. A comparative cytogenetic analysis, with Giemsa's staining, Ag-NOR staining and sequential C-banding + Giemsa + CMA + DAPI was performed on eight species: Gephyromantis sp. Ca19, G.striatus (Vences, Glaw, Andreone, Jesu et Schimmenti, 2002), Mantidactylus (Chonomantis) sp. Ca11, M. (Brygoomantis) alutus (Peracca, 1893), M. (Hylobatrachus) cowanii (Boulenger, 1882), Spinomantispropeaglavei "North" (Methuen et Hewitt, 1913), S.phantasticus (Glaw et Vences, 1997) and S. sp. Ca3. Gephyromantisstriatus, M. (Brygoomantis) alutus and Spinomantispropeaglavei "North" have a karyotype of 2n = 24 chromosomes while the other species show 2n = 26 chromosomes. Among the analysed species we detected differences in the number and position of telocentric elements, location of NOR loci (alternatively on the 6th, 7th or 10th pair) and in the distribution of heterochromatin, which shows species-specific patterns. Merging our data with those previously available, we propose a karyotype of 2n = 26 with all biarmed elements and loci of NORs on the 6th chromosome pair as the ancestral state in the whole family Mantellidae. From this putative ancestral condition, a reduction of chromosome number through similar tandem fusions (from 2n = 26 to 2n = 24) occurred independently in Mantidactylus Boulenger, 1895 (subgenus Brygoomantis Dubois, 1992), Spinomantis Dubois, 1992 and Gephyromantis Methuen, 1920. Similarly, a relocation of NORs, from the putative primitive configuration on the 6th chromosome, occurred independently in Gephyromantis, Blommersia Dubois, 1992, Guibemantis Dubois, 1992, Mantella Boulenger, 1882 and Spinomantis. Chromosome inversions of primitive biarmed elements likely generated a variable number of telocentric elements in Mantellanigricans Guibé, 1978 and a different number of taxa of Gephyromantis (subgenera Duboimantis Glaw et Vences, 2006 and Laurentomantis Dubois, 1980) and Mantidactylus (subgenera Brygoomantis, Chonomantis Glaw et Vences, 1994, Hylobatrachus Laurent, 1943 and Ochthomantis Glaw et Vences, 1994).

19.
Chemosphere ; 307(Pt 4): 136095, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35995187

RESUMEN

Heavy metal contamination is recognized worldwide as a serious threat to human health and wildlife, and reducing their emissions is a priority of international and EU actions. Due to its persistence, high bioaccumulation tendency, and toxicity properties, lead (Pb) is one of the heavy metals of greatest concern. Even at low concentrations, lead induces various clinical and subclinical conditions in both humans and animals, and it has been included in the priority list of hazardous substances. In the present study, we used zebrafish's early stages as a model, given their well-acknowledged predictive value in the risk assessment of chemicals. This study was designed to investigate the morphological and morphometric alterations induced by Pb during zebrafish's early development and disclose the putative effects stage- and/or dose-dependent. We examined injuries induced by two environmentally relevant and extremely low concentrations of Pb (2.5 µg/L and 5 µg/L) during two exposure windows: early (between 1 and 7 dpf) and late (between 2 and 8 dpf). We clearly demonstrated that the incidence and severity of morphological abnormalities increased with increasing Pb dose and exposure time in both early and late-exposed groups. Furthermore, we revealed that malformation severity was significantly higher in the early exposed group than in the late exposure group at all exposure times and for both tested doses, thus highlighting the high sensitivity of zebrafish during the initial stages of development. The information presented in this paper emphasizes the effectiveness of morphological biomarkers in unveiling threatening situations and supports the role of zebrafish embryos and larvae in risk assessment and environmental monitoring.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Animales , Biomarcadores , Sustancias Peligrosas , Humanos , Larva , Plomo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Pez Cebra
20.
Animals (Basel) ; 13(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36611689

RESUMEN

We investigated the relationship between age and body length, and age at sexual maturity of Physeter macrocephalus individuals stranded along the Italian coast. Our molecular analysis shows that all our samples belong to the C.001.002 haplotype, shared between Atlantic and Mediterranean populations. We show that males attain sexual maturity at 10 years, similar to those from other marine areas. However, considering the same body length class, Mediterranean males are older than Atlantic ones. Our finding of a Mediterranean pregnant female of only 6.5 m in length and an assessed age of 24-26 years is particularly noteworthy, considering that females reach sexual maturity at about 9 years and 9 m of total length in other regions. Comparing our results with the literature data, we highlight the positive correlation between lifespan, adult body length and weight of males from the Mediterranean and Atlantic Ocean. Regardless of whether the relatively small size of Mediterranean specimens is a consequence of an inbreeding depression or an adaptation to less favorable trophic conditions, we recommend to closely monitor this population from a conservation perspective. In fact, its low genetic diversity likely corresponds to a relatively limited ability to respond to environmental changes compared with other populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA