Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Fungal Genet Biol ; 172: 103886, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38485049

RESUMEN

Plant-derived sugars and lipids are key nutritional sources for plant associated fungi. However, the relationship between utilization of host-derived sugars and lipids during development of the symbiotic association remains unknown. Here we show that the fungus Metarhizium robertsii also needs plant-derived lipids to develop symbiotic relationship with plants. The fatty acid binding proteins FABP1 and FABP2 are important for utilization of plant-derived lipids as the deletion of Fabp1 and Fabp2 significantly reduced the ability of M. robertsii to colonize rhizoplane and rhizosphere of maize and Arabidopsis thaliana. Deleting Fabp1 and Fabp2 increased sugar utilization by upregulating six sugar transporters, and this explains why deleting the monosaccharide transporter gene Mst1, which plays an important role in utilization of plant-derived sugars, had no impact on the ability of the double-gene deletion mutant ΔFabp1::ΔFabp2 to colonize plant roots. FABP1 and FABP2 were also found in other plant-associated Metarhizium species, and they were highly expressed in the medium using the tomato root exudate as the sole carbon and nitrogen source, suggesting that they could be also important for these species to develop symbiotic relationship with plants. In conclusion, we discovered that utilization of plant-derived sugars and lipids are coupled during colonization of rhizoplane and rhizosphere by M. robertsii.


Asunto(s)
Arabidopsis , Metarhizium , Raíces de Plantas , Rizosfera , Zea mays , Metarhizium/genética , Metarhizium/metabolismo , Arabidopsis/microbiología , Arabidopsis/genética , Raíces de Plantas/microbiología , Zea mays/microbiología , Simbiosis/genética , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Azúcares/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(16): 7982-7989, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30948646

RESUMEN

The emergence of new pathogenic fungi has profoundly impacted global biota, but the underlying mechanisms behind host shifts remain largely unknown. The endophytic insect pathogen Metarhizium robertsii evolved from fungi that were plant associates, and entomopathogenicity is a more recently acquired adaptation. Here we report that the broad host-range entomopathogen M. robertsii has 18 genes that are derived via horizontal gene transfer (HGT). The necessity of degrading insect cuticle served as a major selective pressure to retain these genes, as 12 are up-regulated during penetration; 6 were confirmed to have a role in penetration, and their collective actions are indispensable for infection. Two lipid-carrier genes are involved in utilizing epicuticular lipids, and a third (MrNPC2a) facilitates hemocoel colonization. Three proteases degraded the procuticular protein matrix, which facilitated up-regulation of other cuticle-degrading enzymes. The three lipid carriers and one of the proteases are present in all analyzed Metarhizium species and are essential for entomopathogenicity. Acquisition of another protease (MAA_01413) in an ancestor of broad host-range lineages contributed to their host-range expansion, as heterologous expression in the locust specialist Metarhizium acridum enabled it to kill caterpillars. Our work reveals that HGT was a key mechanism in the emergence of entomopathogenicity in Metarhizium from a plant-associated ancestor and in subsequent host-range expansion by some Metarhizium lineages.


Asunto(s)
Transferencia de Gen Horizontal/genética , Especificidad del Huésped/genética , Metarhizium , Virulencia/genética , Animales , Saltamontes/microbiología , Metarhizium/genética , Metarhizium/patogenicidad
3.
Environ Microbiol ; 19(10): 3896-3908, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28447400

RESUMEN

Metarhizium robertsii occupies a wide array of ecological niches and has diverse lifestyle options (saprophyte, insect pathogen and plant symbiont), that renders it an unusually effective model for studying genetic mechanisms for fungal adaptation. Here over 20,000 M. robertsii T-DNA mutants were screened in order to elucidate genetic mechanism by which M. robertsii replicates and persists in diverse niches. About 287 conidiation, colony sectorization or pathogenicity loci, many of which have not been reported in other fungi were identified. By analysing a series of conidial pigmentation mutants, a new fungal pigmentation gene cluster, which contains Mr-Pks1, Mr-EthD and Mlac1 was identified. A conserved conidiation regulatory pathway containing Mr-BrlA, Mr-AbaA and Mr-WetA regulates expression of these pigmentation genes. During conidiation Mr-BlrA up-regulates Mr-AbaA, which in turn controls Mr-WetA. It was found that Hog1-MAPK regulates fungal conidiation by controlling the conidiation regulatory pathway, and that all three pigmentation genes exercise feedback regulation of conidiation. This work provided the foundation for deeper understanding of the genetic processes behind M. robertsii adaptive phenotypes, and advances our insights into conidiation and pigmentation in this fungus.


Asunto(s)
ADN Bacteriano/genética , Metarhizium/genética , Metarhizium/patogenicidad , Pigmentación/genética , Esporas Fúngicas/genética , Animales , Agentes de Control Biológico , ADN de Hongos/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Insectos/microbiología , Sistema de Señalización de MAP Quinasas/genética , Familia de Multigenes/genética , Esporas Fúngicas/metabolismo , Virulencia/genética
4.
mSystems ; 6(6): e0127721, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34904861

RESUMEN

It is widely recognized that plant-symbiotic fungi are supported by photosynthates; however, little is known about the molecular mechanisms underlying the utilization of plant-derived sugars by rhizospheric fungi. In the insect-pathogenic and plant-symbiotic fungus Metarhizium robertsii, we previously showed that the utilization of oligosaccharides by the transporter MRT (Metarhizium raffinose transporter) is important for rhizosphere competency. In this study, we identified a novel monosaccharide transporter (MST1) that is involved in the colonization of the rhizoplane and acts additively with MRT to colonize the rhizosphere. MST1 is not involved in infection of insects by M. robertsii. MST1 is an H+ symporter and is able to transport a broad spectrum of monosaccharides, including glucose, sorbose, mannose, rhamnose, and fructose. Deletion of the Mst1 gene impaired germination and mycelial growth in medium containing the sugars that it can transport. Homologs of MST1 were widely found in many fungi, including plant symbionts such as Trichoderma spp. and mycorrhizal fungi and plant pathogens such as Fusarium spp. This work significantly advances insights into the development of symbiotic relationships between plants and fungi. IMPORTANCE Over 90% of all vascular plant species develop an intimate symbiosis with fungi, which has an enormous impact on terrestrial ecosystems. It is widely recognized that plant-symbiotic fungi are supported by photosynthates, but little is known about the mechanisms for fungi to utilize plant-derived carbon sources. In the fungus Metarhizium robertsii, we identified a novel monosaccharide transporter (MST1) that is an H+ symporter and can transport a broad spectrum of monosaccharides, including glucose, sorbose, mannose, rhamnose, and fructose. MST1 is involved in the colonization of the rhizoplane and acts additively with the previously characterized oligosaccharide transporter MRT to colonize the rhizosphere. Homologs of MST1 were found in many fungi, including plant symbionts and plant pathogens, suggesting that the utilization of plant-derived sugars by MST1 homologs could also be important for other fungi to develop a symbiotic or parasitic relationship with their respective plant hosts.

5.
Org Lett ; 19(7): 1686-1689, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28301168

RESUMEN

Histone deacetylation normally decreases the gene expression in organisms. By genome-wide deletions of epigenetic regulators in entomopathogenic fungus Metarhizium robertsii, unexpected activations of orphan secondary metabolite genes have been found upon the disruption of a histone acetyltransferase (HAT) gene Hat1. This led to the characterization of 11 new natural products, including eight isocoumarin derivatives meromusides A-H and two nonribosomal peptides meromutides A and B. Therefore, disruption of HAT represents a new approach to mine chemical diversity from fungi.


Asunto(s)
Metarhizium , Productos Biológicos , Histona Acetiltransferasas , Estructura Molecular , Esporas Fúngicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA