Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(15): e2116887119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377796

RESUMEN

Developmental and epileptic encephalopathies (DEEs) are neurodevelopmental diseases characterized by refractory epilepsy, distinct electroencephalographic and neuroradiological features, and various degrees of developmental delay. Mutations in KCNQ2, KCNQ3, and, more rarely, KCNQ5 genes encoding voltage-gated potassium channel subunits variably contributing to excitability control of specific neuronal populations at distinct developmental stages have been associated to DEEs. In the present work, the clinical features of two DEE patients carrying de novo KCNQ5 variants affecting the same residue in the pore region of the Kv7.5 subunit (G347S/A) are described. The in vitro functional properties of channels incorporating these variants were investigated with electrophysiological and biochemical techniques to highlight pathophysiological disease mechanisms. Currents carried by Kv7.5 G347 S/A channels displayed: 1) large (>10 times) increases in maximal current density, 2) the occurrence of a voltage-independent component, 3) slower deactivation kinetics, and 4) hyperpolarization shift in activation. All these functional features are consistent with a gain-of-function (GoF) pathogenetic mechanism. Similar functional changes were also observed when the same variants were introduced at the corresponding position in Kv7.2 subunits. Nonstationary noise analysis revealed that GoF effects observed for both Kv7.2 and Kv7.5 variants were mainly attributable to an increase in single-channel open probability, without changes in membrane abundance or single-channel conductance. The mutation-induced increase in channel opening probability was insensitive to manipulation of membrane levels of the critical Kv7 channel regulator PIP2. These results reveal a pathophysiological mechanism for KCNQ5-related DEEs, which might be exploited to implement personalized treatments.


Asunto(s)
Epilepsia Refractaria , Mutación con Ganancia de Función , Canales de Potasio KCNQ , Adolescente , Niño , Epilepsia Refractaria/genética , Femenino , Humanos , Canales de Potasio KCNQ/genética , Masculino , Mutación , Fenotipo , Probabilidad
2.
Am J Physiol Cell Physiol ; 326(3): C893-C904, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38284124

RESUMEN

Ion channels in the blood-brain barrier (BBB) play a main role in controlling the interstitial fluid composition and cerebral blood flow, and their dysfunction contributes to the disruption of the BBB occurring in many neurological diseases such as epilepsy. In this study, using morphological and functional approaches, we evaluated the expression and role in the BBB of Kv7 channels, a family of voltage-gated potassium channels including five members (Kv7.1-5) that play a major role in the regulation of cell excitability and transmembrane flux of potassium ions. Immunofluorescence experiments showed that Kv7.1, Kv7.4, and Kv7.5 were expressed in rat brain microvessels (BMVs), as well as brain primary- and clonal (BEND-3) endothelial cells (ECs). Kv7.5 localized at the cell-to-cell junction sites, whereas Kv7.4 was also found in pericytes. The Kv7 activator retigabine increased transendothelial electrical resistance (TEER) in both primary ECs and BEND-3 cells; moreover, retigabine reduced paracellular dextran flux in BEND-3 cells. These effects were prevented by the selective Kv7 blocker XE-991. Exposure to retigabine also hyperpolarized cell membrane and increased tight junctions (TJs) integrity in BEND-3 cells. BMVs from rats treated with kainic acid (KA) showed a disruption of TJs and a selective reduction of Kv7.5 expression. In BEND-3 cells, retigabine prevented the increase of cell permeability and the reduction of TJs integrity induced by KA. Overall, these findings demonstrate that Kv7 channels are expressed in the BBB, where they modulate barrier properties both in physiological and pathological conditions.NEW & NOTEWORTHY This study describes for the first time the expression and the functional role of Kv7 potassium channels in the blood-brain barrier. We show that the opening of Kv7 channels reduces endothelial cell permeability both in physiological and pathological conditions via the hyperpolarization of cell membrane and the sealing of tight junctions. Therefore, activation of endothelial Kv7 channels might be a useful strategy to treat epilepsy and other neurological disorders characterized by blood-brain barrier dysfunction.


Asunto(s)
Barrera Hematoencefálica , Carbamatos , Epilepsia , Fenilendiaminas , Animales , Ratas , Células Endoteliales , Ácido Kaínico/toxicidad , Encéfalo
3.
Epilepsia ; 63(1): e7-e14, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34778950

RESUMEN

A wide phenotypic spectrum of neurological diseases is associated with KCNA1 (Kv1.1) variants. To investigate the molecular basis of such a heterogeneous clinical presentation and identify the possible correlation with in vitro phenotypes, we compared the functional consequences of three heterozygous de novo variants (p.P403S, p.P405L, and p.P405S) in Kv1.1 pore region found in four patients with severe developmental and epileptic encephalopathy (DEE), with those of a de novo variant in the voltage sensor (p.A261T) identified in two patients with mild, carbamazepine-responsive, focal epilepsy. Patch-clamp electrophysiology was used to investigate the functional properties of mutant Kv1.1 subunits, both expressed as homomers and heteromers with wild-type Kv1.1 subunits. KCNA1 pore mutations markedly decreased (p. P405S) or fully suppressed (p. P403S, p. P405L) Kv1.1-mediated currents, exerting loss-of-function (LoF) effects. By contrast, channels carrying the p.A261T variant exhibited a hyperpolarizing shift of the activation process, consistent with a gain-of-function (GoF) effect. The present results unveil a novel correlation between in vitro phenotype (GoF vs LoF) and clinical course (mild vs severe) in KCNA1-related phenotypes. The excellent clinical response to carbamazepine observed in the patients carrying the A261T variant suggests an exquisite sensitivity of KCNA1 GoF to sodium channel inhibition that should be further explored.


Asunto(s)
Epilepsia , Carbamazepina/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Humanos , Canal de Potasio Kv.1.1/genética , Mutación/genética , Fenotipo
4.
Pflugers Arch ; 472(7): 881-898, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32506321

RESUMEN

Seizures are the most common neurological manifestation in the newborn period, with an estimated incidence of 1.8-3.5 per 1000 live births. Prolonged or intractable seizures have a detrimental effect on cognition and brain function in experimental animals and are associated with adverse long-term neurodevelopmental sequelae and an increased risk of post-neonatal epilepsy in humans. The developing brain is particularly susceptible to the potentially severe effects of epilepsy, and epilepsy, especially when refractory to medications, often results in a developmental and epileptic encephalopathy (DEE) with developmental arrest or regression. DEEs can be primarily attributed to genetic causes. Given the critical role of potassium (K+) currents with distinct subcellular localization, biophysical properties, modulation, and pharmacological profile in regulating intrinsic electrical properties of neurons and their responsiveness to synaptic inputs, it is not too surprising that genetic research in the past two decades has identified several K+ channel genes as responsible for a large fraction of DEE. In the present article, we review the genetically determined epileptic channelopathies affecting three members of the Kv7 family, namely Kv7.2 (KCNQ2), Kv7.3 (KCNQ3), and Kv7.5 (KCNQ5); we review the phenotypic spectrum of Kv7-related epileptic channelopathies, the different genetic and pathogenetic mechanisms, and the emerging genotype-phenotype correlations which may prove crucial for prognostic predictions, disease management, parental counseling, and individually tailored therapeutic attempts.


Asunto(s)
Canalopatías/genética , Canalopatías/patología , Canal de Potasio KCNQ1/genética , Neuronas/patología , Convulsiones/genética , Convulsiones/patología , Animales , Humanos
5.
Ann Neurol ; 86(2): 181-192, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31177578

RESUMEN

OBJECTIVE: Recent reports have described single individuals with neurodevelopmental disability (NDD) harboring heterozygous KCNQ3 de novo variants (DNVs). We sought to assess whether pathogenic variants in KCNQ3 cause NDD and to elucidate the associated phenotype and molecular mechanisms. METHODS: Patients with NDD and KCNQ3 DNVs were identified through an international collaboration. Phenotypes were characterized by clinical assessment, review of charts, electroencephalographic (EEG) recordings, and parental interview. Functional consequences of variants were analyzed in vitro by patch-clamp recording. RESULTS: Eleven patients were assessed. They had recurrent heterozygous DNVs in KCNQ3 affecting residues R230 (R230C, R230H, R230S) and R227 (R227Q). All patients exhibited global developmental delay within the first 2 years of life. Most (8/11, 73%) were nonverbal or had a few words only. All patients had autistic features, and autism spectrum disorder (ASD) was diagnosed in 5 of 11 (45%). EEGs performed before 10 years of age revealed frequent sleep-activated multifocal epileptiform discharges in 8 of 11 (73%). For 6 of 9 (67%) recorded between 1.5 and 6 years of age, spikes became near-continuous during sleep. Interestingly, most patients (9/11, 82%) did not have seizures, and no patient had seizures in the neonatal period. Voltage-clamp recordings of the mutant KCNQ3 channels revealed gain-of-function (GoF) effects. INTERPRETATION: Specific GoF variants in KCNQ3 cause NDD, ASD, and abundant sleep-activated spikes. This new phenotype contrasts both with self-limited neonatal epilepsy due to KCNQ3 partial loss of function, and with the neonatal or infantile onset epileptic encephalopathies due to KCNQ2 GoF. ANN NEUROL 2019;86:181-192.


Asunto(s)
Trastorno Autístico/diagnóstico , Trastorno Autístico/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Mutación con Ganancia de Función/genética , Canal de Potasio KCNQ3/genética , Secuencia de Aminoácidos , Niño , Preescolar , Variación Genética/genética , Humanos , Canal de Potasio KCNQ3/química , Masculino , Estructura Secundaria de Proteína , Adulto Joven
6.
Aging Clin Exp Res ; 32(10): 2115-2131, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32865757

RESUMEN

BACKGROUND: In December 2019, a novel human-infecting coronavirus, SARS-CoV-2, had emerged. The WHO has classified the epidemic as a "public health emergency of international concern". A dramatic situation has unfolded with thousands of deaths, occurring mainly in the aged and very ill people. Epidemiological studies suggest that immune system function is impaired in elderly individuals and these subjects often present a deficiency in fat-soluble and hydrosoluble vitamins. METHODS: We searched for reviews describing the characteristics of autoimmune diseases and the available therapeutic protocols for their treatment. We set them as a paradigm with the purpose to uncover common pathogenetic mechanisms between these pathological conditions and SARS-CoV-2 infection. Furthermore, we searched for studies describing the possible efficacy of vitamins A, D, E, and C in improving the immune system function. RESULTS: SARS-CoV-2 infection induces strong immune system dysfunction characterized by the development of an intense proinflammatory response in the host, and the development of a life-threatening condition defined as cytokine release syndrome (CRS). This leads to acute respiratory syndrome (ARDS), mainly in aged people. High mortality and lethality rates have been observed in elderly subjects with CoV-2-related infection. CONCLUSIONS: Vitamins may shift the proinflammatory Th17-mediated immune response arising in autoimmune diseases towards a T-cell regulatory phenotype. This review discusses the possible activity of vitamins A, D, E, and C in restoring normal antiviral immune system function and the potential therapeutic role of these micronutrients as part of a therapeutic strategy against SARS-CoV-2 infection.


Asunto(s)
Betacoronavirus/inmunología , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/dietoterapia , Infecciones por Coronavirus/prevención & control , Citocinas/inmunología , Pandemias/prevención & control , Neumonía Viral/dietoterapia , Neumonía Viral/prevención & control , Vitaminas/inmunología , Vitaminas/uso terapéutico , Anciano , Ácido Ascórbico/inmunología , Ácido Ascórbico/farmacología , Ácido Ascórbico/uso terapéutico , Betacoronavirus/efectos de los fármacos , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Humanos , Neumonía Viral/inmunología , Neumonía Viral/virología , SARS-CoV-2 , Células Th17/efectos de los fármacos , Células Th17/inmunología , Vitamina A/inmunología , Vitamina A/farmacología , Vitamina A/uso terapéutico , Vitamina D/inmunología , Vitamina D/farmacología , Vitamina D/uso terapéutico , Vitamina E/inmunología , Vitamina E/farmacología , Vitamina E/uso terapéutico , Vitaminas/farmacología
7.
J Peripher Nerv Syst ; 24(4): 330-339, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31707753

RESUMEN

The development of patient-specific induced pluripotent stem cells (iPSCs) offered interesting insights in modeling the pathogenesis of Charcot-Marie-Tooth (CMT) disease and thus we decided to explore the phenotypes of iPSCs derived from a single CMT patient carrying a mutant ATP1A1 allele (p.Pro600Ala). iPSCs clones generated from CMT and control fibroblasts, were induced to differentiate into neural precursors and then into post-mitotic neurons. Control iPSCs differentiated into neuronal precursors and then into post-mitotic neurons within 6-8 days. On the contrary, the differentiation of CMT iPSCs was clearly defective. Electrophysiological properties confirmed that post-mitotic neurons were less mature compared to the normal counterpart. The impairment of in vitro differentiation of CMT iPSCs only concerned with the neuronal pathway, because they were able to differentiate into mesendodermal cells and other ectodermal derivatives. ATP1A1 was undetectable in the few neuronal cells derived from CMT iPSCs. ATP1A1 gene mutation (p.Pro600Ala), responsible for a form of axonal CMT disease, is associated in vitro with a dramatic alteration of the differentiation of patient-derived iPSCs into post-mitotic neurons. Thus, the defect in neuronal cell development might lead in vivo to a decreased number of mature neurons in ATP1A1-CMT disease.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Células Madre Pluripotentes Inducidas/fisiología , ATPasa Intercambiadora de Sodio-Potasio/genética , Diferenciación Celular/fisiología , Células Cultivadas , Fenómenos Electrofisiológicos , Humanos , Linaje
8.
Int J Mol Sci ; 20(18)2019 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-31487785

RESUMEN

Kv7.2-Kv7.5 channels mediate the M-current (IKM), a K+-selective current regulating neuronal excitability and representing an attractive target for pharmacological therapy against hyperexcitability diseases such as pain. Kv7 channels interact functionally with transient receptor potential vanilloid 1 (TRPV1) channels activated by endogenous and/or exogenous pain-inducing substances, such as bradykinin (BK) or capsaicin (CAP), respectively; however, whether Kv7 channels of specific molecular composition provide a dominant contribution in BK- or CAP-evoked responses is yet unknown. To this aim, Kv7 transcripts expression and function were assessed in F11 immortalized sensorial neurons, a cellular model widely used to assess nociceptive molecular mechanisms. In these cells, the effects of the pan-Kv7 activator retigabine were investigated, as well as the effects of ICA-27243 and (S)-1, two Kv7 activators acting preferentially on Kv7.2/Kv7.3 and Kv7.4/Kv7.5 channels, respectively, on BK- and CAP-induced changes in intracellular Ca2+ concentrations ([Ca2+]i). The results obtained revealed the expression of transcripts of all Kv7 genes, leading to an IKM-like current. Moreover, all tested Kv7 openers inhibited BK- and CAP-induced responses by a similar extent (~60%); at least for BK-induced Ca2+ responses, the potency of retigabine (IC50~1 µM) was higher than that of ICA-27243 (IC50~5 µM) and (S)-1 (IC50~7 µM). Altogether, these results suggest that IKM activation effectively counteracts the cellular processes triggered by TRPV1-mediated pain-inducing stimuli, and highlight a possible critical contribution of Kv7.4 subunits.


Asunto(s)
Señalización del Calcio , Capsaicina/farmacología , Canales de Potasio KCNQ/metabolismo , Células Receptoras Sensoriales/metabolismo , Fármacos del Sistema Sensorial/farmacología , Canales Catiónicos TRPV/metabolismo , Animales , Bradiquinina/farmacología , Calcio/metabolismo , Carbamatos/farmacología , Línea Celular , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Moduladores del Transporte de Membrana/farmacología , Fenilendiaminas/farmacología , Ratas , Células Receptoras Sensoriales/efectos de los fármacos
9.
Int J Mol Sci ; 20(14)2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31295832

RESUMEN

Kv7.2 subunits encoded by the KCNQ2 gene provide a major contribution to the M-current (IKM), a voltage-gated K+ current crucially involved in the regulation of neuronal excitability. Heterozygous missense variants in Kv7.2 are responsible for epileptic diseases characterized by highly heterogeneous genetic transmission and clinical severity, ranging from autosomal-dominant Benign Familial Neonatal Seizures (BFNS) to sporadic cases of severe epileptic and developmental encephalopathy (DEE). Here, we describe a patient with neonatal onset DEE, carrying a previously undescribed heterozygous KCNQ2 c.418G > C, p.Glu140Gln (E140Q) variant. Patch-clamp recordings in CHO cells expressing the E140Q mutation reveal dramatic loss of function (LoF) effects. Multistate structural modelling suggested that the E140Q substitution impeded an intrasubunit electrostatic interaction occurring between the E140 side chain in S2 and the arginine at position 210 in S4 (R210); this interaction is critically involved in stabilizing the activated configuration of the voltage-sensing domain (VSD) of Kv7.2. Functional results from coupled charge reversal or disulfide trapping experiments supported such a hypothesis. Finally, retigabine restored mutation-induced functional changes, reinforcing the rationale for the clinical use of Kv7 activators as personalized therapy for DEE-affected patients carrying Kv7.2 LoF mutations.


Asunto(s)
Encefalopatías/genética , Discapacidades del Desarrollo/genética , Predisposición Genética a la Enfermedad , Variación Genética , Canal de Potasio KCNQ2/genética , Dominios y Motivos de Interacción de Proteínas/genética , Espasmos Infantiles/genética , Sustitución de Aminoácidos , Biomarcadores , Encefalopatías/diagnóstico , Encefalopatías/terapia , Preescolar , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/terapia , Electroencefalografía , Estudios de Asociación Genética , Humanos , Lactante , Recién Nacido , Canal de Potasio KCNQ2/química , Mutación con Pérdida de Función , Imagen por Resonancia Magnética , Masculino , Modelos Moleculares , Neuroimagen , Conformación Proteica , Espasmos Infantiles/diagnóstico , Espasmos Infantiles/terapia , Relación Estructura-Actividad , Evaluación de Síntomas
10.
Epilepsia ; 58(1): e10-e15, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27861786

RESUMEN

Variants in KCNQ2 encoding for Kv 7.2 neuronal K+ channel subunits lead to a spectrum of neonatal-onset epilepsies, ranging from self-limiting forms to severe epileptic encephalopathy. Most KCNQ2 pathogenic variants cause loss-of-function, whereas few increase channel activity (gain-of-function). We herein provide evidence for a new phenotypic and functional profile in KCNQ2-related epilepsy: infantile spasms without prior neonatal seizures associated with a gain-of-function gene variant. With use of an international registry, we identified four unrelated patients with the same de novo heterozygous KCNQ2 c.593G>A, p.Arg198Gln (R198Q) variant. All were born at term and discharged home without seizures or concern of encephalopathy, but developed infantile spasms with hypsarrhythmia (or modified hypsarrhythmia) between the ages of 4 and 6 months. At last follow-up (ages 3-11 years), all patients were seizure-free and had severe developmental delay. In vitro experiments showed that Kv7.2 R198Q subunits shifted current activation gating to hyperpolarized potentials, indicative of gain-of-function; in neurons, Kv 7.2 and Kv 7.2 R198Q subunits similarly populated the axon initial segment, suggesting that gating changes rather than altered subcellular distribution contribute to disease molecular pathogenesis. We conclude that KCNQ2 R198Q is a model for a new subclass of KCNQ2 variants causing infantile spasms and encephalopathy, without preceding neonatal seizures. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here.


Asunto(s)
Encefalopatías/genética , Canal de Potasio KCNQ2/genética , Mutación/genética , Espasmos Infantiles/genética , Animales , Arginina/genética , Células CHO , Células Cultivadas , Niño , Preescolar , Cricetulus , Glutamina/genética , Hipocampo/citología , Humanos , Lactante , Estudios Longitudinales , Potenciales de la Membrana/genética , Modelos Moleculares , Neuronas/fisiología , Ratas , Transfección
11.
J Neurosci ; 35(9): 3782-93, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25740509

RESUMEN

Mutations in Kv7.2 (KCNQ2) and Kv7.3 (KCNQ3) genes, encoding for voltage-gated K(+) channel subunits underlying the neuronal M-current, have been associated with a wide spectrum of early-onset epileptic disorders ranging from benign familial neonatal seizures to severe epileptic encephalopathies. The aim of the present work has been to investigate the molecular mechanisms of channel dysfunction caused by voltage-sensing domain mutations in Kv7.2 (R144Q, R201C, and R201H) or Kv7.3 (R230C) recently found in patients with epileptic encephalopathies and/or intellectual disability. Electrophysiological studies in mammalian cells transfected with human Kv7.2 and/or Kv7.3 cDNAs revealed that each of these four mutations stabilized the activated state of the channel, thereby producing gain-of-function effects, which are opposite to the loss-of-function effects produced by previously found mutations. Multistate structural modeling revealed that the R201 residue in Kv7.2, corresponding to R230 in Kv7.3, stabilized the resting and nearby voltage-sensing domain states by forming an intricate network of electrostatic interactions with neighboring negatively charged residues, a result also confirmed by disulfide trapping experiments. Using a realistic model of a feedforward inhibitory microcircuit in the hippocampal CA1 region, an increased excitability of pyramidal neurons was found upon incorporation of the experimentally defined parameters for mutant M-current, suggesting that changes in network interactions rather than in intrinsic cell properties may be responsible for the neuronal hyperexcitability by these gain-of-function mutations. Together, the present results suggest that gain-of-function mutations in Kv7.2/3 currents may cause human epilepsy with a severe clinical course, thus revealing a previously unexplored level of complexity in disease pathogenetic mechanisms.


Asunto(s)
Epilepsia Benigna Neonatal/genética , Epilepsia Benigna Neonatal/fisiopatología , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Mutación/genética , Secuencia de Aminoácidos , Animales , Biotinilación/genética , Células CHO , Cricetinae , Cricetulus , ADN Complementario/biosíntesis , ADN Complementario/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
12.
Proc Natl Acad Sci U S A ; 110(11): 4386-91, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23440208

RESUMEN

Mutations in the K(V)7.2 gene encoding for voltage-dependent K(+) channel subunits cause neonatal epilepsies with wide phenotypic heterogeneity. Two mutations affecting the same positively charged residue in the S4 domain of K(V)7.2 have been found in children affected with benign familial neonatal seizures (R213W mutation) or with neonatal epileptic encephalopathy with severe pharmacoresistant seizures and neurocognitive delay, suppression-burst pattern at EEG, and distinct neuroradiological features (R213Q mutation). To examine the molecular basis for this strikingly different phenotype, we studied the functional characteristics of mutant channels by using electrophysiological techniques, computational modeling, and homology modeling. Functional studies revealed that, in homomeric or heteromeric configuration with K(V)7.2 and/or K(V)7.3 subunits, both mutations markedly destabilized the open state, causing a dramatic decrease in channel voltage sensitivity. These functional changes were (i) more pronounced for channels incorporating R213Q- than R213W-carrying K(V)7.2 subunits; (ii) proportional to the number of mutant subunits incorporated; and (iii) fully restored by the neuronal K(v)7 activator retigabine. Homology modeling confirmed a critical role for the R213 residue in stabilizing the activated voltage sensor configuration. Modeling experiments in CA1 hippocampal pyramidal cells revealed that both mutations increased cell firing frequency, with the R213Q mutation prompting more dramatic functional changes compared with the R213W mutation. These results suggest that the clinical disease severity may be related to the extent of the mutation-induced functional K(+) channel impairment, and set the preclinical basis for the potential use of K(v)7 openers as a targeted anticonvulsant therapy to improve developmental outcome in neonates with K(V)7.2 encephalopathy.


Asunto(s)
Epilepsia Benigna Neonatal/metabolismo , Canal de Potasio KCNQ2/metabolismo , Mutación Missense , Sustitución de Aminoácidos , Animales , Anticonvulsivantes/farmacología , Células CHO , Carbamatos/farmacología , Cricetinae , Cricetulus , Epilepsia Benigna Neonatal/genética , Epilepsia Benigna Neonatal/patología , Genotipo , Humanos , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Modelos Moleculares , Fenotipo , Fenilendiaminas/farmacología , Células Piramidales/metabolismo , Células Piramidales/patología , Homología Estructural de Proteína
13.
Proc Natl Acad Sci U S A ; 110(7): E559-66, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23359697

RESUMEN

Human I(Ks) channels activate slowly with the onset of cardiac action potentials to repolarize the myocardium. I(Ks) channels are composed of KCNQ1 (Q1) pore-forming subunits that carry S4 voltage-sensor segments and KCNE1 (E1) accessory subunits. Together, Q1 and E1 subunits recapitulate the conductive and kinetic properties of I(Ks). How E1 modulates Q1 has been unclear. Investigators have variously posited that E1 slows the movement of S4 segments, slows opening and closing of the conduction pore, or modifies both aspects of electromechanical coupling. Here, we show that Q1 gating current can be resolved in the absence of E1, but not in its presence, consistent with slowed movement of the voltage sensor. E1 was directly demonstrated to slow S4 movement with a fluorescent probe on the Q1 voltage sensor. Direct correlation of the kinetics of S4 motion and ionic current indicated that slowing of sensor movement by E1 was both necessary and sufficient to determine the slow-activation time course of I(Ks).


Asunto(s)
Oído Interno/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/metabolismo , Miocardio/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Conductividad Eléctrica , Fluorescencia , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canal de Potasio KCNQ1/genética , Potenciales de la Membrana/fisiología , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Imagen de Colorante Sensible al Voltaje
14.
Epilepsia ; 56(2): e15-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25524373

RESUMEN

Mutations in the KCNQ2 gene encoding for voltage-gated potassium channel subunits have been found in patients affected with early onset epilepsies with wide phenotypic heterogeneity, ranging from benign familial neonatal seizures (BFNS) to epileptic encephalopathy with cognitive impairment, drug resistance, and characteristic electroencephalography (EEG) and neuroradiologic features. By contrast, only few KCNQ3 mutations have been rarely described, mostly in patients with typical BFNS. We report clinical, genetic, and functional data from a family in which early onset epilepsy and neurocognitive deficits segregated with a novel mutation in KCNQ3 (c.989G>T; p.R330L). Electrophysiological studies in mammalian cells revealed that incorporation of KCNQ3 R330L mutant subunits impaired channel function, suggesting a pathogenetic role for such mutation. The degree of functional impairment of channels incorporating KCNQ3 R330L subunits was larger than that of channels carrying another KCNQ3 mutation affecting the same codon but leading to a different amino acid substitution (p.R330C), previously identified in two families with typical BFNS. These data suggest that mutations in KCNQ3, similarly to KCNQ2, can be found in patients with more severe phenotypes including intellectual disability, and that the degree of the functional impairment caused by mutations at position 330 in KCNQ3 may contribute to clinical disease severity.


Asunto(s)
Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Canal de Potasio KCNQ3/genética , Mutación/genética , Convulsiones/genética , Niño , Femenino , Pruebas Genéticas/métodos , Humanos , Discapacidad Intelectual/etiología , Canal de Potasio KCNQ2/genética , Masculino , Linaje
15.
Hum Mutat ; 35(3): 356-67, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24375629

RESUMEN

Mutations in the KCNQ2 and KCNQ3 genes encoding for Kv 7.2 (KCNQ2; Q2) and Kv 7.3 (KCNQ3; Q3) voltage-dependent K(+) channel subunits, respectively, cause neonatal epilepsies with wide phenotypic heterogeneity. In addition to benign familial neonatal epilepsy (BFNE), KCNQ2 mutations have been recently found in families with one or more family members with a severe outcome, including drug-resistant seizures with psychomotor retardation, electroencephalogram (EEG) suppression-burst pattern (Ohtahara syndrome), and distinct neuroradiological features, a condition that was named "KCNQ2 encephalopathy." In the present article, we describe clinical, genetic, and functional data from 17 patients/families whose electroclinical presentation was consistent with the diagnosis of BFNE. Sixteen different heterozygous mutations were found in KCNQ2, including 10 substitutions, three insertions/deletions and three large deletions. One substitution was found in KCNQ3. Most of these mutations were novel, except for four KCNQ2 substitutions that were shown to be recurrent. Electrophysiological studies in mammalian cells revealed that homomeric or heteromeric KCNQ2 and/or KCNQ3 channels carrying mutant subunits with newly found substitutions displayed reduced current densities. In addition, we describe, for the first time, that some mutations impair channel regulation by syntaxin-1A, highlighting a novel pathogenetic mechanism for KCNQ2-related epilepsies.


Asunto(s)
Epilepsia Benigna Neonatal/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Sintaxina 1/genética , Animales , Biotinilación , Células CHO , Estudios de Cohortes , Cricetulus , Femenino , Eliminación de Gen , Mutación de Línea Germinal , Humanos , Masculino , Mutagénesis Insercional , Linaje , Alineación de Secuencia
16.
Pharmacol Res ; 87: 80-6, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24973659

RESUMEN

In the present study, the neuroprotective effects of the adipokine leptin, and the molecular mechanism involved, have been studied in rat and mice cortical neurons exposed to N-methyl-d-aspartate (NMDA) in vitro. In rat cortical neurons, leptin elicited neuroprotective effects against NMDA-induced cell death, which were concentration-dependent (10-100 ng/ml) and largest when the adipokine was preincubated for 2h before the neurotoxic stimulus. In both rat and mouse cortical neurons, leptin-induced neuroprotection was fully antagonized by paxilline (Pax, 0.01-1 µM) and iberiotoxin (Ibtx, 1-100 nM), with EC50s of 38 ± 10 nM and 5 ± 2 nM for Pax and Ibtx, respectively, close to those reported for Pax- and Ibtx-induced Ca(2+)- and voltage-activated K(+) channels (Slo1 BK channels) blockade; the BK channel opener NS1619 (1-30 µM) induced a concentration-dependent protection against NMDA-induced excitotoxicity. Moreover, cortical neurons from mice lacking one or both alleles coding for Slo1 BK channel pore-forming subunits were insensitive to leptin-induced neuroprotection. Finally, leptin exposure dose-dependently (10-100 ng/ml) increased intracellular Ca(2+) levels in rat cortical neurons. In conclusion, our results suggest that Slo1 BK channel activation following increases in intracellular Ca(2+) levels is a critical step for leptin-induced neuroprotection in NMDA-exposed cortical neurons in vitro, thus highlighting leptin-based intervention via BK channel activation as a potential strategy to counteract neurodegenerative diseases.


Asunto(s)
Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Leptina/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Calcio/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Ratones Transgénicos , N-Metilaspartato , Neuronas/metabolismo , Ratas Wistar
17.
Neurotherapeutics ; 21(1): e00296, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38241158

RESUMEN

While loss-of-function (LoF) variants in KCNQ2 are associated with a spectrum of neonatal-onset epilepsies, gain-of-function (GoF) variants cause a more complex phenotype that precludes neonatal-onset epilepsy. In the present work, the clinical features of three patients carrying a de novo KCNQ2 Y141N (n â€‹= â€‹1) or G239S variant (n â€‹= â€‹2) respectively, are described. All three patients had a mild global developmental delay, with prominent language deficits, and strong activation of interictal epileptic activity during sleep. Epileptic seizures were not reported. The absence of neonatal seizures suggested a GoF effect and prompted functional testing of the variants. In vitro whole-cell patch-clamp electrophysiological experiments in Chinese Hamster Ovary cells transiently-transfected with the cDNAs encoding Kv7.2 subunits carrying the Y141N or G239S variants in homomeric or heteromeric configurations with Kv7.2 subunits, revealed that currents from channels incorporating mutant subunits displayed increased current densities and hyperpolarizing shifts of about 10 â€‹mV in activation gating; both these functional features are consistent with an in vitro GoF phenotype. The antidepressant drug amitriptyline induced a reversible and concentration-dependent inhibition of current carried by Kv7.2 Y141N and G239S mutant channels. Based on in vitro results, amitriptyline was prescribed in one patient (G239S), prompting a significant improvement in motor, verbal, social, sensory and adaptive behavior skillsduring the two-year-treatment period. Thus, our results suggest that KCNQ2 GoF variants Y141N and G239S cause a mild DD with prominent language deficits in the absence of neonatal seizures and that treatment with the Kv7 channel blocker amitriptyline might represent a potential targeted treatment for patients with KCNQ2 GoF variants.


Asunto(s)
Amitriptilina , Epilepsia , Recién Nacido , Cricetinae , Animales , Humanos , Cricetulus , Células CHO , Mutación con Ganancia de Función , Fenotipo , Convulsiones , Canal de Potasio KCNQ2/genética
18.
J Med Chem ; 67(11): 9124-9149, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38782404

RESUMEN

Gain-of-function (GoF) variants in KCNT1 channels cause severe, drug-resistant forms of epilepsy. Quinidine is a known KCNT1 blocker, but its clinical use is limited due to severe drawbacks. To identify novel KCNT1 blockers, a homology model of human KCNT1 was built and used to screen an in-house library of compounds. Among the 20 molecules selected, five (CPK4, 13, 16, 18, and 20) showed strong KCNT1-blocking ability in an in vitro fluorescence-based assay. Patch-clamp experiments confirmed a higher KCNT1-blocking potency of these compounds when compared to quinidine, and their selectivity for KCNT1 over hERG and Kv7.2 channels. Among identified molecules, CPK20 displayed the highest metabolic stability; this compound also blocked KCNT2 currents, although with a lower potency, and counteracted GoF effects prompted by 2 recurrent epilepsy-causing KCNT1 variants (G288S and A934T). The present results provide solid rational basis for future design of novel compounds to counteract KCNT1-related neurological disorders.


Asunto(s)
Epilepsia , Humanos , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Animales , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Relación Estructura-Actividad , Células HEK293 , Simulación por Computador , Canales de potasio activados por Sodio
19.
Mol Pharmacol ; 84(5): 763-73, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24019223

RESUMEN

K(v)7.4 channel subunits are expressed in central auditory pathways and in inner ear sensory hair cells and skeletal and smooth muscle cells. Openers of K(v)7.4 channels have been suggested to improve hearing loss, systemic or pulmonary arterial hypertension, urinary incontinence, gastrointestinal and neuropsychiatric diseases, and skeletal muscle disorders. Scorpion venoms are a large source of peptides active on K⁺ channels. Therefore, we have optimized a combined purification/screening procedure to identify specific modulator(s) of K(v)7.4 channels from the venom of the North African scorpion Androctonus australis (Aa). We report the isolation and functional characterization of AaTXKß2₋64, a novel variant of AaTXKß1₋64, in a high-performance liquid chromatography fraction from Aa venom (named P8), which acts as the first peptide activator of K(v)7.4 channels. In particular, in both Xenopus oocytes and mammalian Chinese hamster ovary cells, AaTXKß2₋64, but not AaTXKß1₋64, hyperpolarized the threshold voltage of current activation and increased the maximal currents of heterologously expressed K(v)7.4 channels. AaTXKß2₋64 also activated K(v)7.3, K(v)7.2/3, and K(v)7.5/3 channels, whereas homomeric K(v)1.1, K(v)7.1, and K(v)7.2 channels were unaffected. We anticipate that these results may prove useful in unraveling the novel biologic roles of AaTXKß2₋64-sensitive K(v)7 channels and developing novel pharmacologic tools that allow subtype-selective targeting of K(v)7 channels.


Asunto(s)
Canales de Potasio KCNQ/efectos de los fármacos , Venenos de Escorpión/farmacología , Secuencia de Aminoácidos , Animales , Células CHO , Cromatografía Líquida de Alta Presión , Cricetinae , Cricetulus , Femenino , Datos de Secuencia Molecular , Venenos de Escorpión/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Xenopus laevis
20.
Biophys J ; 102(6): 1372-82, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22455920

RESUMEN

Changes in voltage-dependent gating represent a common pathogenetic mechanism for genetically inherited channelopathies, such as benign familial neonatal seizures or peripheral nerve hyperexcitability caused by mutations in neuronal K(v)7.2 channels. Mutation-induced changes in channel voltage dependence are most often inferred from macroscopic current measurements, a technique unable to provide a detailed assessment of the structural rearrangements underlying channel gating behavior; by contrast, gating currents directly measure voltage-sensor displacement during voltage-dependent gating. In this work, we describe macroscopic and gating current measurements, together with molecular modeling and molecular-dynamics simulations, from channels carrying mutations responsible for benign familial neonatal seizures and/or peripheral nerve hyperexcitability; K(v)7.4 channels, highly related to K(v)7.2 channels both functionally and structurally, were used for these experiments. The data obtained showed that mutations affecting charged residues located in the more distal portion of S(4) decrease the stability of the open state and the active voltage-sensing domain configuration but do not directly participate in voltage sensing, whereas mutations affecting a residue (R4) located more proximally in S(4) caused activation of gating-pore currents at depolarized potentials. These results reveal that distinct molecular mechanisms underlie the altered gating behavior of channels carrying disease-causing mutations at different voltage-sensing domain locations, thereby expanding our current view of the pathogenesis of neuronal hyperexcitability diseases.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ2/química , Canal de Potasio KCNQ2/metabolismo , Potenciales de la Membrana/fisiología , Mutación/genética , Neuronas/fisiología , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Humanos , Canal de Potasio KCNQ2/genética , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA