Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 135(5): 907-18, 2008 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-19041753

RESUMEN

Genomic instability and alterations in gene expression are hallmarks of eukaryotic aging. The yeast histone deacetylase Sir2 silences transcription and stabilizes repetitive DNA, but during aging or in response to a DNA break, the Sir complex relocalizes to sites of genomic instability, resulting in the desilencing of genes that cause sterility, a characteristic of yeast aging. Using embryonic stem cells, we show that mammalian Sir2, SIRT1, represses repetitive DNA and a functionally diverse set of genes across the mouse genome. In response to DNA damage, SIRT1 dissociates from these loci and relocalizes to DNA breaks to promote repair, resulting in transcriptional changes that parallel those in the aging mouse brain. Increased SIRT1 expression promotes survival in a mouse model of genomic instability and suppresses age-dependent transcriptional changes. Thus, DNA damage-induced redistribution of SIRT1 and other chromatin-modifying proteins may be a conserved mechanism of aging in eukaryotes.


Asunto(s)
Envejecimiento/genética , Cromatina/metabolismo , Inestabilidad Genómica , Sirtuinas/genética , Animales , Encéfalo/metabolismo , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Reparación del ADN , Células Madre Embrionarias , Técnicas de Inactivación de Genes , Humanos , Linfoma/metabolismo , Ratones , Datos de Secuencia Molecular , Estrés Oxidativo , Sirtuina 1 , Organismos Libres de Patógenos Específicos , Neoplasias del Timo/metabolismo , Levaduras/citología , Levaduras/metabolismo
2.
EMBO J ; 33(13): 1438-53, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24825348

RESUMEN

Mice overexpressing the mitotic checkpoint kinase gene BubR1 live longer, whereas mice hypomorphic for BubR1 (BubR1(H/H)) live shorter and show signs of accelerated aging. As wild-type mice age, BubR1 levels decline in many tissues, a process that is proposed to underlie normal aging and age-related diseases. Understanding why BubR1 declines with age and how to slow this process is therefore of considerable interest. The sirtuins (SIRT1-7) are a family of NAD(+)-dependent deacetylases that can delay age-related diseases. Here, we show that the loss of BubR1 levels with age is due to a decline in NAD(+) and the ability of SIRT2 to maintain lysine-668 of BubR1 in a deacetylated state, which is counteracted by the acetyltransferase CBP. Overexpression of SIRT2 or treatment of mice with the NAD(+) precursor nicotinamide mononucleotide (NMN) increases BubR1 abundance in vivo. Overexpression of SIRT2 in BubR1(H/H) animals increases median lifespan, with a greater effect in male mice. Together, these data indicate that further exploration of the potential of SIRT2 and NAD(+) to delay diseases of aging in mammals is warranted.


Asunto(s)
Longevidad/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Sirtuina 2/metabolismo , Animales , Proteínas de Ciclo Celular , Inducción Enzimática/fisiología , Células HeLa , Humanos , Masculino , Ratones , Ratones Noqueados , NAD/genética , NAD/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Sirtuina 2/genética
3.
J Biol Chem ; 290(3): 1546-58, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25411251

RESUMEN

The NAD biosynthetic precursors nicotinamide mononucleotide and nicotinamide riboside are reported to confer resistance to metabolic defects induced by high fat feeding in part by promoting oxidative metabolism in skeletal muscle. Similar effects are obtained by germ line deletion of major NAD-consuming enzymes, suggesting that the bioavailability of NAD is limiting for maximal oxidative capacity. However, because of their systemic nature, the degree to which these interventions exert cell- or tissue-autonomous effects is unclear. Here, we report a tissue-specific approach to increase NAD biosynthesis only in muscle by overexpressing nicotinamide phosphoribosyltransferase, the rate-limiting enzyme in the salvage pathway that converts nicotinamide to NAD (mNAMPT mice). These mice display a ∼50% increase in skeletal muscle NAD levels, comparable with the effects of dietary NAD precursors, exercise regimens, or loss of poly(ADP-ribose) polymerases yet surprisingly do not exhibit changes in muscle mitochondrial biogenesis or mitochondrial function and are equally susceptible to the metabolic consequences of high fat feeding. We further report that chronic elevation of muscle NAD in vivo does not perturb the NAD/NADH redox ratio. These studies reveal for the first time the metabolic effects of tissue-specific increases in NAD synthesis and suggest that critical sites of action for supplemental NAD precursors reside outside of the heart and skeletal muscle.


Asunto(s)
Citocinas/metabolismo , Músculo Esquelético/metabolismo , NAD/biosíntesis , Nicotinamida Fosforribosiltransferasa/metabolismo , Oxígeno/metabolismo , Animales , Sitios de Unión , Calorimetría , Cromatografía Líquida de Alta Presión , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias Musculares/metabolismo , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Oxidación-Reducción , Poli(ADP-Ribosa) Polimerasas/metabolismo
4.
Rev Invest Clin ; 68(1): 7-16, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27028172

RESUMEN

As human life expectancy is prolonged, age-related diseases are thriving. Aging is a complex multifactorial process of molecular and cellular decline that affects tissue function over time, rendering organisms frail and susceptible to disease and death. Over the last decades, a growing body of scientific literature across different biological models, ranging from yeast, worms, flies, and mice to primates, humans and other long-lived animals, has contributed greatly towards identifying conserved biological mechanisms that ward off structural and functional deterioration within living systems. Collectively, these data offer powerful insights into healthy aging and longevity. For example, molecular integrity of the genome, telomere length, epigenetic landscape stability, and protein homeostasis are all features linked to "youthful" states. These molecular hallmarks underlie cellular functions associated with aging like mitochondrial fitness, nutrient sensing, efficient intercellular communication, stem cell renewal, and regenerative capacity in tissues. At present, calorie restriction remains the most robust strategy for extending health and lifespan in most biological models tested. Thus, pathways that mediate the beneficial effects of calorie restriction by integrating metabolic signals to aging processes have received major attention, such as insulin/insulin growth factor-1, sirtuins, mammalian target of rapamycin, and 5' adenosine monophosphate-activated protein kinase. Consequently, small-molecule targets of these pathways have emerged in the impetuous search for calorie restriction mimetics, of which resveratrol, metformin, and rapamycin are the most extensively studied. A comprehensive understanding of the molecular and cellular mechanisms that underlie age-related deterioration and repair, and how these pathways interconnect, remains a major challenge for uncovering interventions to slow human aging while extending molecular and physiological youthfulness, vitality, and health. This review summarizes key molecular mechanisms underlying the biology of healthy aging and longevity.


Asunto(s)
Envejecimiento/fisiología , Esperanza de Vida , Longevidad/fisiología , Factores de Edad , Animales , Restricción Calórica , Humanos , Ratones , Modelos Biológicos
5.
Haematologica ; 99(2): 267-75, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23975182

RESUMEN

Resveratrol, a polyphenolic-stilbene, has received increased attention in the last decade due to its wide range of biological activities. Beta(ß)-thalassemias are inherited red cell disorders, found worldwide, characterized by ineffective erythropoiesis and red cell oxidative damage with reduced survival. We evaluated the effects of low-dose-resveratrol (5 µM) on in vitro human erythroid differentiation of CD34(+) from normal and ß-thalassemic subjects. We found that resveratrol induces accelerated erythroid-maturation, resulting in the reduction of colony-forming units of erythroid cells and increased intermediate and late erythroblasts. In sorted colony-forming units of erythroid cells resveratrol activates Forkhead-box-class-O3, decreases Akt activity and up-regulates anti-oxidant enzymes as catalase. In an in vivo murine model for ß-thalassemia, resveratrol (2.4 mg/kg) reduces ineffective erythropoiesis, increases hemoglobin levels, reduces reticulocyte count and ameliorates red cell survival. In both wild-type and ß-thalassemic mice, resveratrol up-regulates scavenging enzymes such as catalase and peroxiredoxin-2 through Forkhead-box-class-O3 activation. These data indicate that resveratrol inhibits Akt resulting in FoxO3 activation with upregulation of cytoprotective systems enabling the pathological erythroid precursors to resist the oxidative damage and continue to differentiate. Our data suggest that the dual effect of resveratrol on erythropoiesis through activation of FoxO3 transcriptional factor combined with the amelioration of oxidative stress in circulating red cells may be considered as a potential novel therapeutic strategy in treating ß-thalassemia.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Eritrocitos/metabolismo , Eritropoyesis/efectos de los fármacos , Factores de Transcripción Forkhead/metabolismo , Estilbenos/farmacología , Talasemia beta/metabolismo , Animales , Catalasa/metabolismo , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Eritrocitos/patología , Proteína Forkhead Box O3 , Humanos , Masculino , Ratones , Peroxirredoxinas/metabolismo , Resveratrol , Talasemia beta/tratamiento farmacológico , Talasemia beta/patología
6.
Proc Natl Acad Sci U S A ; 108(43): E952-61, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-21949390

RESUMEN

The formation of myelin by Schwann cells (SCs) occurs via a series of orchestrated molecular events. We previously used global expression profiling to examine peripheral nerve myelination and identified the NAD(+)-dependent deacetylase Sir-two-homolog 2 (Sirt2) as a protein likely to be involved in myelination. Here, we show that Sirt2 expression in SCs is correlated with that of structural myelin components during both developmental myelination and remyelination after nerve injury. Transgenic mice lacking or overexpressing Sirt2 specifically in SCs show delays in myelin formation. In SCs, we found that Sirt2 deacetylates Par-3, a master regulator of cell polarity. The deacetylation of Par-3 by Sirt2 decreases the activity of the polarity complex signaling component aPKC, thereby regulating myelin formation. These results demonstrate that Sirt2 controls an essential polarity pathway in SCs during myelin assembly and provide insights into the association between intracellular metabolism and SC plasticity.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Vaina de Mielina/fisiología , Proteína Quinasa C/metabolismo , Células de Schwann/fisiología , Transducción de Señal/fisiología , Sirtuina 2/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Western Blotting , Proteínas de Ciclo Celular , Cromatografía Liquida , Cartilla de ADN/genética , Genotipo , Inmunoprecipitación , Luciferasas , Ratones , Ratones Transgénicos , Plásmidos/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sirtuina 2/genética , Espectrometría de Masas en Tándem
8.
Angiogenesis ; 16(4): 985-92, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23912262

RESUMEN

Regeneration of blood vessels in ischemic neuronal tissue is critical to reduce tissue damage in diseases. In proliferative retinopathy, initial vessel loss leads to retinal ischemia, which can induce either regrowth of vessels to restore normal metabolism and minimize damage, or progress to hypoxia-induced sight-threatening pathologic vaso-proliferation. It is not well understood how retinal neurons mediate regeneration of vascular growth in response to ischemic insults. In this study we aim to investigate the potential role of Sirtuin 1 (Sirt1), a metabolically-regulated protein deacetylase, in mediating the response of ischemic neurons to regulate vascular regrowth in a mouse model of oxygen-induced ischemic retinopathy (OIR). We found that Sirt1 is highly induced in the avascular ischemic retina in OIR. Conditional depletion of neuronal Sirt1 leads to significantly decreased retinal vascular regeneration into the avascular zone and increased hypoxia-induced pathologic vascular growth. This effect is likely independent of PGC-1α, a known Sirt1 target, as absence of PGC-1α in knockout mice does not impact vascular growth in retinopathy. We found that neuronal Sirt1 controls vascular regrowth in part through modulating deacetylation and stability of hypoxia-induced factor 1α and 2α, and thereby modulating expression of angiogenic factors. These results indicate that ischemic neurons induce Sirt1 to promote revascularization into ischemic neuronal areas, suggesting a novel role of neuronal Sirt1 in mediating vascular regeneration in ischemic conditions, with potential implications beyond retinopathy.


Asunto(s)
Isquemia/fisiopatología , Neovascularización Fisiológica/fisiología , Neuronas/metabolismo , Regeneración/fisiología , Vasos Retinianos/fisiología , Retinopatía de la Prematuridad , Sirtuina 1/fisiología , Proteínas Angiogénicas/biosíntesis , Proteínas Angiogénicas/genética , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carbazoles/farmacología , Línea Celular , Modelos Animales de Enfermedad , Isquemia/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Cultivo de Órganos , Oxígeno/toxicidad , Terapia por Inhalación de Oxígeno/efectos adversos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Procesamiento Proteico-Postraduccional/efectos de los fármacos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/enzimología , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/deficiencia , Sirtuina 1/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Regulación hacia Arriba
9.
Sci Rep ; 12(1): 12258, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851833

RESUMEN

Heart failure (HF) is the inability of the heart to pump blood sufficiently to meet the metabolic demands of the body. HF with reduced systolic function is characterized by cardiac hypertrophy, ventricular fibrosis and remodeling, and decreased cardiac contractility, leading to cardiac functional impairment and death. Transverse aortic constriction (TAC) is a well-established model for inducing hypertrophy and HF in rodents. Mice globally deficient in sirtuin 5 (SIRT5), a NAD+-dependent deacylase, are hypersensitive to cardiac stress and display increased mortality after TAC. Prior studies assessing SIRT5 functions in the heart have all employed loss-of-function approaches. In this study, we generated SIRT5 overexpressing (SIRT5OE) mice, and evaluated their response to chronic pressure overload using TAC. Compared to littermate controls, SIRT5OE mice were protected against adverse functional consequences of TAC, left ventricular dilation and impaired ejection fraction. Transcriptomic analysis revealed that SIRT5 suppresses key HF sequelae, including the metabolic switch from fatty acid oxidation to glycolysis, immune activation, and fibrotic signaling pathways. We conclude that SIRT5 is a limiting factor in the preservation of cardiac function in response to experimental pressure overload.


Asunto(s)
Insuficiencia Cardíaca , Sirtuinas , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Modelos Animales de Enfermedad , Fibrosis , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Sirtuinas/metabolismo , Remodelación Ventricular
10.
J Neurosci ; 30(29): 9695-707, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20660252

RESUMEN

Conservation of normal cognitive functions relies on the proper performance of the nervous system at the cellular and molecular level. The mammalian nicotinamide-adenine dinucleotide-dependent deacetylase SIRT1 impacts different processes potentially involved in the maintenance of brain integrity, such as chromatin remodeling, DNA repair, cell survival, and neurogenesis. Here we show that SIRT1 is expressed in neurons of the hippocampus, a key structure in learning and memory. Using a combination of behavioral and electrophysiological paradigms, we analyzed the effects of SIRT1 deficiency and overexpression on mouse learning and memory as well as on synaptic plasticity. We demonstrated that the absence of SIRT1 impaired cognitive abilities, including immediate memory, classical conditioning, and spatial learning. In addition, we found that the cognitive deficits in SIRT1 knock-out (KO) mice were associated with defects in synaptic plasticity without alterations in basal synaptic transmission or NMDA receptor function. Brains of SIRT1-KO mice exhibited normal morphology and dendritic spine structure but displayed a decrease in dendritic branching, branch length, and complexity of neuronal dendritic arbors. Also, a decrease in extracellular signal-regulated kinase 1/2 phosphorylation and altered expression of hippocampal genes involved in synaptic function, lipid metabolism, and myelination were detected in SIRT1-KO mice. In contrast, mice with high levels of SIRT1 expression in brain exhibited regular synaptic plasticity and memory. We conclude that SIRT1 is indispensable for normal learning, memory, and synaptic plasticity in mice.


Asunto(s)
Cognición/fisiología , Hipocampo/fisiología , Aprendizaje/fisiología , Potenciación a Largo Plazo/genética , Memoria/fisiología , Neuronas/metabolismo , Sirtuina 1/genética , Animales , Espinas Dendríticas/ultraestructura , Regulación de la Expresión Génica , Hipocampo/citología , Ratones , Ratones Noqueados , Neuronas/química , Técnicas de Placa-Clamp , Sirtuina 1/análisis , Distribución Tisular
11.
Biochem J ; 404(1): 1-13, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17447894

RESUMEN

Sirtuins are a conserved family of proteins found in all domains of life. The first known sirtuin, Sir2 (silent information regulator 2) of Saccharomyces cerevisiae, from which the family derives its name, regulates ribosomal DNA recombination, gene silencing, DNA repair, chromosomal stability and longevity. Sir2 homologues also modulate lifespan in worms and flies, and may underlie the beneficial effects of caloric restriction, the only regimen that slows aging and extends lifespan of most classes of organism, including mammals. Sirtuins have gained considerable attention for their impact on mammalian physiology, since they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. In this review we describe our current understanding of the biological function of the seven mammalian sirtuins, SIRT1-7, and we will also discuss their potential as mediators of caloric restriction and as pharmacological targets to delay and treat human age-related diseases.


Asunto(s)
Sirtuinas/fisiología , Animales , Metabolismo Energético , VIH-1/fisiología , Humanos , Inflamación/fisiopatología , Canales Iónicos/fisiología , Mamíferos , Replicación Viral
12.
Free Radic Biol Med ; 33(4): 521-32, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12160934

RESUMEN

The two Neurospora crassa catalase genes cat-1 and cat-3 were shown to encode Cat-1 and Cat-3 large monofunctional catalases. cat-1 and cat-3 genes are regulated differentially during the asexual life cycle and under stress conditions. A stepwise increase in catalase activity occurs during conidiation. Conidia have 60 times more catalase activity than exponentially growing hyphae. Cat-1 activity was predominant in conidia, during germination and early exponential growth. It was induced during prestationary growth and by ethanol or heat shock. Cat-3 activity was predominant during late exponential growth and at the start of the conidiation process. It was induced under stress conditions, such as H(2)O(2), paraquat, cadmium, heat shock, uric acid, and nitrate treatment. In general, Cat-1 activity was associated with nongrowing cells and Cat-3 activity with growing cells. The Cat-3 N-terminus sequence indicates that this catalase is processed and presumably secreted. Paraquat caused modification and degradation of Cat-1. Under heat shock both Cat-1 and Cat-3 were modified and degraded and Cat-1 was resynthesized. Paraquat and heat shock effects were observed only in the presence of air and are probably related to in vivo generation of singlet oxygen. Purified Cat-3 was modified with a photosensitizing reaction in which singlet oxygen is produced.


Asunto(s)
Catalasa/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Isoenzimas/metabolismo , Neurospora crassa/enzimología , Aerobiosis , Secuencia de Aminoácidos , Catalasa/genética , Ciclo Celular , Secuencia de Consenso , Inducción Enzimática/efectos de los fármacos , Proteínas Fúngicas/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Genes Fúngicos , Calor , Isoenzimas/genética , Datos de Secuencia Molecular , Neurospora crassa/efectos de los fármacos , Neurospora crassa/genética , Neurospora crassa/crecimiento & desarrollo , Estrés Oxidativo , Paraquat/farmacología , Fotoquímica , ARN de Hongos/biosíntesis , ARN Mensajero/biosíntesis , Reproducción Asexuada/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Oxígeno Singlete/metabolismo
13.
Front Biosci (Landmark Ed) ; 19(8): 1300-19, 2014 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-24896352

RESUMEN

Among diverse environmental factors that modify aging, diet has a profound effect. Calorie restriction (CR), which entails reduced calorie consumption without malnutrition, is the only natural regimen shown to extend maximum and mean lifespan, as well as healthspan in a wide range of organisms. Although the knowledge about the biological mechanisms underlying CR is still incipient, various approaches in biogerontology research suggest that CR can ameliorate hallmarks of aging at the cellular level including telomere erosion, epigenetic alterations, stem cells depletion, cellular senescence, mitochondrial dysfunction, genomic instability, proteostasis imbalance, impaired nutrient sensing and abnormal intercellular communication. Currently, the NAD + /sirtuin pathway is one of the few mechanisms described to mediate CR effects and sirtuin-activating compounds (STACs) mimic many effects of CR. Herein, we discuss the effects of CR on healthspan with emphasis on neuroprotection, how CR counteracts cellular aging, how sirtuin pathways intertwine with CR, and the relevance of STACs in mimicking CR effects.


Asunto(s)
Envejecimiento/metabolismo , Restricción Calórica , NAD/metabolismo , Sirtuinas/metabolismo , Envejecimiento/genética , Epigénesis Genética/genética , Inestabilidad Genómica/genética , Humanos , Modelos Genéticos , Transducción de Señal/genética , Acortamiento del Telómero/genética
14.
PLoS One ; 9(1): e85031, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416337

RESUMEN

Proliferative retinopathy is a leading cause of blindness, including retinopathy of prematurity (ROP) in children and diabetic retinopathy in adults. Retinopathy is characterized by an initial phase of vessel loss, leading to tissue ischemia and hypoxia, followed by sight threatening pathologic neovascularization in the second phase. Previously we found that Sirtuin1 (Sirt1), a metabolically dependent protein deacetylase, regulates vascular regeneration in a mouse model of oxygen-induced proliferative retinopathy (OIR), as neuronal depletion of Sirt1 in retina worsens retinopathy. In this study we assessed whether over-expression of Sirtuin1 in retinal neurons and vessels achieved by crossing Sirt1 over-expressing flox mice with Nestin-Cre mice or Tie2-Cre mice, respectively, may protect against retinopathy. We found that over-expression of Sirt1 in Nestin expressing retinal neurons does not impact vaso-obliteration or pathologic neovascularization in OIR, nor does it influence neuronal degeneration in OIR. Similarly, increased expression of Sirt1 in Tie2 expressing vascular endothelial cells and monocytes/macrophages does not protect retinal vessels in OIR. In addition to the genetic approaches, dietary supplement with Sirt1 activators, resveratrol or SRT1720, were fed to wild type mice with OIR. Neither treatment showed significant vaso-protective effects in retinopathy. Together these results indicate that although endogenous Sirt1 is important as a stress-induced protector in retinopathy, over-expression of Sirt1 or treatment with small molecule activators at the examined doses do not provide additional protection against retinopathy in mice. Further studies are needed to examine in depth whether increasing levels of Sirt1 may serve as a potential therapeutic approach to treat or prevent retinopathy.


Asunto(s)
Degeneración Nerviosa/genética , Neuronas/metabolismo , Retina/metabolismo , Degeneración Retiniana/genética , Sirtuina 1/genética , Animales , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Expresión Génica , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Integrasas/genética , Integrasas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Neovascularización Patológica , Degeneración Nerviosa/inducido químicamente , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Nestina/genética , Nestina/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Oxígeno/efectos adversos , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Resveratrol , Retina/efectos de los fármacos , Retina/patología , Degeneración Retiniana/inducido químicamente , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Sirtuina 1/metabolismo , Estilbenos/farmacología
15.
Curr Pharm Des ; 19(38): 6823-38, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23530517

RESUMEN

Our understanding of the magnitude and physiological significance of proteome lysine acetylation remained incipient for five decades since it was first described. State-of-the-art methodologies, ranging from functional genomics to large-scale proteomics, have recently uncovered that this modification is more broadly represented in proteins than previously recognized, thus constituting the "acetylome." At present, it is estimated that acetylome covers only one tenth of the proteome, however, due its potential significance in physiology is capturing great attention. The first components of the cellular machinery, which finely orchestrate acetylome homeostasis, were identified by the end of last century. Since then, the majority of our growing knowledge concerning the physiological relevance of proteome reversible acetylation comes from the study of sirtuins, a unique type of lysine deacetylase that uses NAD(+). Sirtuins participate in a variety of cellular processes, ranging from transcription, DNA repair, energy balance, mitochondrial biogenesis and cell division, to apoptosis, autophagy and aging. Within the brain, besides their widespread epigenetic effects of dynamically modifying histones, sirtuins also target a variety of non-histone proteins either commonly deregulated in pathologies, or that participate in normal cerebral functions. For example, they modulate critical elements of the circadian rhythms, neurogenesis, synapses, cognition, serotonin synthesis, myelination, and proteins involved in neuropathology. Acetylome dynamics, and its regulation by sirtuins, may also help to better understand the molecular mechanisms underlying brain aging. This work reviews the pathways as orchestrated by the interplay between acetylome and sirtuins in the brain, from physiology involvement, to aging processes, and pathological settings.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/fisiología , Proteoma , Sirtuinas/fisiología , Acetilación , Envejecimiento/patología , Animales , Autofagia , Encéfalo/patología , Neoplasias Encefálicas/etiología , Senescencia Celular , Ritmo Circadiano , Daño del ADN , Emociones , Humanos , Lisina/metabolismo , FN-kappa B/fisiología , Enfermedades Neurodegenerativas/etiología , Neurogénesis , Estrés Oxidativo
16.
Science ; 339(6124): 1216-9, 2013 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-23471411

RESUMEN

A molecule that treats multiple age-related diseases would have a major impact on global health and economics. The SIRT1 deacetylase has drawn attention in this regard as a target for drug design. Yet controversy exists around the mechanism of sirtuin-activating compounds (STACs). We found that specific hydrophobic motifs found in SIRT1 substrates such as PGC-1α and FOXO3a facilitate SIRT1 activation by STACs. A single amino acid in SIRT1, Glu(230), located in a structured N-terminal domain, was critical for activation by all previously reported STAC scaffolds and a new class of chemically distinct activators. In primary cells reconstituted with activation-defective SIRT1, the metabolic effects of STACs were blocked. Thus, SIRT1 can be directly activated through an allosteric mechanism common to chemically diverse STACs.


Asunto(s)
Sirtuina 1/química , Sirtuina 1/metabolismo , Estilbenos/farmacología , Regulación Alostérica , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Células Cultivadas , Activación Enzimática , Proteína Forkhead Box O3 , Factores de Transcripción Forkhead/química , Factores de Transcripción Forkhead/genética , Ácido Glutámico/química , Ácido Glutámico/genética , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Datos de Secuencia Molecular , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Estructura Terciaria de Proteína , Resveratrol , Sirtuina 1/genética , Estilbenos/química , Especificidad por Sustrato
17.
Cell Metab ; 14(3): 301-12, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21907137

RESUMEN

Chronic feeding on high-calorie diets causes obesity and type 2 diabetes mellitus (T2DM), illnesses that affect hundreds of millions. Thus, understanding the pathways protecting against diet-induced metabolic imbalance is of paramount medical importance. Here, we show that mice lacking SIRT1 in steroidogenic factor 1 (SF1) neurons are hypersensitive to dietary obesity owing to maladaptive energy expenditure. Also, mutant mice have increased susceptibility to developing dietary T2DM due to insulin resistance in skeletal muscle. Mechanistically, these aberrations arise, in part, from impaired metabolic actions of the neuropeptide orexin-A and the hormone leptin. Conversely, mice overexpressing SIRT1 in SF1 neurons are more resistant to diet-induced obesity and insulin resistance due to increased energy expenditure and enhanced skeletal muscle insulin sensitivity. Our results unveil important protective roles of SIRT1 in SF1 neurons against dietary metabolic imbalance.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Péptidos y Proteínas de Señalización Intracelular/farmacología , Neuronas/metabolismo , Neuropéptidos/farmacología , Obesidad/metabolismo , Sirtuina 1/deficiencia , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Dieta Alta en Grasa/efectos adversos , Grasas de la Dieta/metabolismo , Grasas de la Dieta/farmacología , Metabolismo Energético , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Inmunohistoquímica , Insulina/metabolismo , Insulina/farmacología , Resistencia a la Insulina , Leptina/farmacología , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Obesidad/complicaciones , Obesidad/patología , Orexinas , Técnicas de Placa-Clamp , Sirtuina 1/genética , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo
18.
Invest Ophthalmol Vis Sci ; 52(5): 2809-16, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21282584

RESUMEN

PURPOSE: Macular telangiectasia (MacTel) is a vision-threatening retinal disease with unknown pathogenesis and no approved treatment. Very low-density lipoprotein receptor mutant mice (Vldlr(-/-)) exhibit critical features of MacTel such as retinal neovascularization and photoreceptor degeneration. In this study, the authors evaluate the therapeutic potential of resveratrol, a plant polyphenol, in Vldlr(-/-) mice as a model for MacTel. METHODS: Vldlr(-/-) and wild-type mice at postnatal day (P) 21 to P60 or P10 to P30 were treated orally with resveratrol. The number of neovascular lesions was evaluated on retinal flatmounts, and resveratrol effects on endothelial cells were assessed by Western blot for phosphorylated ERK1/2, aortic ring, and migration assays. Vegf and Gfap expression was evaluated in laser-capture microdissected retinal layers of angiogenic lesions and nonlesion areas from Vldlr(-/-) and wild-type retinas. RESULTS: From P15 onward, Vldlr(-/-) retinas develop vascular lesions associated with the local upregulation of Vegf in photoreceptors and Gfap in the inner retina. Oral resveratrol reduces lesion formation when administered either before or after disease onset. The reduction of vascular lesions in resveratrol-treated Vldlr(-/-) mice is associated with the suppression of retinal Vegf transcription. Resveratrol also reduces endothelial ERK1/2 signaling as well as the migration and proliferation of endothelial cells. Furthermore, a trend toward increased rhodopsin mRNA in Vldlr(-/-) retinas is observed. CONCLUSIONS: Oral administration of resveratrol is protective against retinal neovascular lesions in Vldlr(-/-) mice by inhibiting Vegf expression and angiogenic activation of retinal endothelial cells. These results suggest that resveratrol might be a safe and effective intervention for treating patients with MacTel.


Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Antioxidantes/administración & dosificación , Modelos Animales de Enfermedad , Receptores de LDL/genética , Neovascularización Retiniana/prevención & control , Telangiectasia Retiniana/prevención & control , Estilbenos/administración & dosificación , Administración Oral , Animales , Western Blotting , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Proteína Ácida Fibrilar de la Glía , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero/metabolismo , Resveratrol , Retina/efectos de los fármacos , Retina/metabolismo , Neovascularización Retiniana/metabolismo , Telangiectasia Retiniana/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
19.
Aging (Albany NY) ; 1(9): 771-83, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20157566

RESUMEN

SIRT3 is a member of the sirtuin family of NAD(+)-dependent deacetylases, which is localized to the mitochondria and is enriched in kidney, brown adipose tissue, heart, and other metabolically active tissues. We report here that SIRT3 responds dynamically to both exercise and nutritional signals in skeletal muscle to coordinate downstream molecular responses. We show that exercise training increases SIRT3 expression as well as associated CREB phosphorylation and PGC-1alpha up-regulation. Furthermore, we show that SIRT3 is more highly expressed in slow oxidative type I soleus muscle compared to fast type II extensor digitorum longus or gastrocnemius muscles. Additionally, we find that SIRT3 protein levels in skeletal muscle are sensitive to diet, for SIRT3 expression increases by fasting and caloric restriction, yet it is decreased by high-fat diet. Interestingly, the caloric restriction regimen also leads to phospho-activation of AMPK in muscle. Conversely in SIRT3 knockout mice, we find that the phosphorylation of both AMPK and CREB and the expression of PGC-1alpha are down regulated, suggesting that these key cellular factors may be important components of SIRT3-mediated biological signals in vivo.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Dieta , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Sirtuina 3/metabolismo , Transactivadores/metabolismo , Estructuras Animales/metabolismo , Animales , Restricción Calórica , Citrato (si)-Sintasa/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ayuno/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosforilación/genética , Caracteres Sexuales , Sirtuina 3/genética , Factores de Transcripción
20.
PLoS One ; 3(4): e2020, 2008 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-18414679

RESUMEN

Numerous longevity genes have been discovered in model organisms and altering their function results in prolonged lifespan. In mammals, some have speculated that any health benefits derived from manipulating these same pathways might be offset by increased cancer risk on account of their propensity to boost cell survival. The Sir2/SIRT1 family of NAD(+)-dependent deacetylases is proposed to underlie the health benefits of calorie restriction (CR), a diet that broadly suppresses cancer in mammals. Here we show that CR induces a two-fold increase SIRT1 expression in the intestine of rodents and that ectopic induction of SIRT1 in a beta-catenin-driven mouse model of colon cancer significantly reduces tumor formation, proliferation, and animal morbidity in the absence of CR. We show that SIRT1 deacetylates beta-catenin and suppresses its ability to activate transcription and drive cell proliferation. Moreover, SIRT1 promotes cytoplasmic localization of the otherwise nuclear-localized oncogenic form of beta-catenin. Consistent with this, a significant inverse correlation was found between the presence of nuclear SIRT1 and the oncogenic form of beta-catenin in 81 human colon tumor specimens analyzed. Taken together, these observations show that SIRT1 suppresses intestinal tumor formation in vivo and raise the prospect that therapies targeting SIRT1 may be of clinical use in beta-catenin-driven malignancies.


Asunto(s)
Neoplasias del Colon/enzimología , Regulación Neoplásica de la Expresión Génica , Sirtuinas/fisiología , Animales , Núcleo Celular/metabolismo , Proliferación Celular , Neoplasias del Colon/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Ratas , Ratas Endogámicas F344 , Sirtuina 1 , Sirtuinas/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA