Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Annu Rev Genet ; 49: 439-59, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26631514

RESUMEN

Eukaryotic genomes often contain large quantities of potentially deleterious sequences, such as transposons. One strategy for mitigating this risk is to package such sequences into so-called constitutive heterochromatin, where the dense chromatin environment is thought to inhibit transcription by excluding transcription factors and RNA polymerase. This type of model makes it tempting to think of heterochromatin as an inert region that is isolated from the rest of the nucleus. Recent work on heterochromatin, however, reveals that it is a dynamic environment. Despite its dense packaging, heterochromatin must remain accessible for a host of processes, including DNA replication and repair, and, paradoxically, transcription. In plants, transcripts produced by specialized RNA polymerases are used to target regions of the genome for silencing via DNA methylation. Thus, the maintenance of heterochromatin requires a careful balancing act of access and exclusion, which is achieved through the action of a host of interrelated pathways.


Asunto(s)
Reparación del ADN/fisiología , Heterocromatina/genética , Heterocromatina/metabolismo , Plantas/genética , Metilación de ADN , Replicación del ADN , Heterocromatina/ultraestructura , Histonas/genética , Histonas/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Transcripción Genética
2.
Proc Natl Acad Sci U S A ; 114(2): 406-411, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028228

RESUMEN

Previously, we have shown that loss of the histone 3 lysine 27 (H3K27) monomethyltransferases ARABIDOPSIS TRITHORAX-RELATED 5 (ATXR5) and ATXR6 (ATXR6) results in the overreplication of heterochromatin. Here we show that the overreplication results in DNA damage and extensive chromocenter remodeling into unique structures we have named "overreplication-associated centers" (RACs). RACs have a highly ordered structure with an outer layer of condensed heterochromatin, an inner layer enriched in the histone variant H2AX, and a low-density core containing foci of phosphorylated H2AX (a marker of double-strand breaks) and the DNA-repair enzyme RAD51. atxr5,6 mutants are strongly affected by mutations in DNA repair, such as ATM and ATR. Because of its dense packaging and repetitive DNA sequence, heterochromatin is a challenging environment in which to repair DNA damage. Previous work in animals has shown that heterochromatic breaks are translocated out of the heterochromatic domain for repair. Our results show that atxr5,6 mutants use a variation on this strategy for repairing heterochromatic DNA damage. Rather than being moved to adjacent euchromatic regions, as in animals, heterochromatin undergoes large-scale remodeling to create a compartment with low chromatin density.


Asunto(s)
Daño del ADN/genética , Heterocromatina/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Regulación de la Expresión Génica de las Plantas/genética , Histonas/genética , Metiltransferasas/genética , Mutación/genética , Fosforilación/genética
3.
Genes Dev ; 26(9): 945-57, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22549957

RESUMEN

Eukaryotes have hundreds of nearly identical 45S ribosomal RNA (rRNA) genes, each encoding the 18S, 5.8S, and 25S catalytic rRNAs. Because cellular demands for ribosomes and protein synthesis vary during development, the number of active rRNA genes is subject to dosage control. In genetic hybrids, one manifestation of dosage control is nucleolar dominance, an epigenetic phenomenon in which the rRNA genes of one progenitor are repressed. For instance, in Arabidopsis suecica, the allotetraploid hybrid of Arabidopsis thaliana and Arabidopsis arenosa, the A. thaliana-derived rRNA genes are selectively silenced. An analogous phenomenon occurs in nonhybrid A. thaliana, in which specific classes of rRNA gene variants are inactivated. An RNA-mediated knockdown screen identified SUVR4 {SUPPRESSOR OF VARIEGATION 3-9 [SU(VAR)3-9]-RELATED 4} as a histone H3 Lys 9 (H3K9) methyltransferase required for nucleolar dominance in A. suecica. H3K9 methyltransferases are also required for variant-specific silencing in A. thaliana, but SUVH5 [SU(VAR)3-9 HOMOLOG 5] and SUVH6, rather than SUVR4, are the key activities in this genomic context. Mutations disrupting the H3K27 methyltransferases ATXR5 or ATXR6 affect which rRNA gene variants are expressed or silenced, and in atxr5 atxr6 double mutants, dominance relationships among variants are reversed relative to wild type. Interestingly, these changes in gene expression are accompanied by changes in the relative abundance of the rRNA gene variants at the DNA level, including overreplication of the normally silenced class and decreased abundance of the normally dominant class. Collectively, our results indicate that histone methylation can affect both the doses of different variants and their differential silencing through the choice mechanisms that achieve dosage control.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Genes de ARNr , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Arabidopsis/genética , Nucléolo Celular/enzimología , Metilación de ADN , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
4.
Nucleic Acids Res ; 45(11): 6375-6387, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28383693

RESUMEN

In plants, the histone H3.1 lysine 27 (H3K27) mono-methyltransferases ARABIDOPSIS TRITHORAX RELATED PROTEIN 5 and 6 (ATXR5/6) regulate heterochromatic DNA replication and genome stability. Our initial studies showed that ATXR5/6 discriminate between histone H3 variants and preferentially methylate K27 on H3.1. In this study, we report three regulatory mechanisms contributing to the specificity of ATXR5/6. First, we show that ATXR5 preferentially methylates the R/F-K*-S/C-G/A-P/C motif with striking preference for hydrophobic and aromatic residues in positions flanking this core of five amino acids. Second, we demonstrate that post-transcriptional modifications of residues neighboring K27 that are typically associated with actively transcribed chromatin are detrimental to ATXR5 activity. Third, we show that ATXR5 PHD domain employs a narrow binding pocket to selectively recognize unmethylated K4 of histone H3. Finally, we demonstrate that deletion or mutation of the PHD domain reduces the catalytic efficiency (kcat/Km of AdoMet) of ATXR5 up to 58-fold, highlighting the multifunctional nature of ATXR5 PHD domain. Overall, our results suggest that several molecular determinants regulate ATXR5/6 methyltransferase activity and epigenetic inheritance of H3.1 K27me1 mark in plants.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Histonas/química , Metiltransferasas/química , Secuencias de Aminoácidos , Proteínas de Arabidopsis/fisiología , Dominio Catalítico , Cristalografía por Rayos X , Regulación de la Expresión Génica de las Plantas , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Metilación , Metiltransferasas/fisiología , Modelos Moleculares , Unión Proteica , Procesamiento Proteico-Postraduccional , Especificidad por Sustrato
5.
PLoS Genet ; 12(6): e1006092, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27253878

RESUMEN

Eukaryotic genomes are regulated by epigenetic marks that act to modulate transcriptional control as well as to regulate DNA replication and repair. In Arabidopsis thaliana, mutation of the ATXR5 and ATXR6 histone methyltransferases causes reduction in histone H3 lysine 27 monomethylation, transcriptional upregulation of transposons, and a genome instability defect in which there is an accumulation of excess DNA corresponding to pericentromeric heterochromatin. We designed a forward genetic screen to identify suppressors of the atxr5/6 phenotype that uncovered loss-of-function mutations in two components of the TREX-2 complex (AtTHP1, AtSAC3B), a SUMO-interacting E3 ubiquitin ligase (AtSTUbL2) and a methyl-binding domain protein (AtMBD9). Additionally, using a reverse genetic approach, we show that a mutation in a plant homolog of the tumor suppressor gene BRCA1 enhances the atxr5/6 phenotype. Through characterization of these mutations, our results suggest models for the production atxr5 atxr6-induced extra DNA involving conflicts between the replicative and transcriptional processes in the cell, and suggest that the atxr5 atxr6 transcriptional defects may be the cause of the genome instability defects in the mutants. These findings highlight the critical intersection of transcriptional silencing and DNA replication in the maintenance of genome stability of heterochromatin.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen/fisiología , Inestabilidad Genómica/genética , Transcripción Genética/genética , Caspasas/genética , Metilación de ADN/genética , Replicación del ADN/genética , Heterocromatina/genética , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/genética , Metiltransferasas/genética , Mutación/genética
6.
Nature ; 466(7309): 987-91, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20631708

RESUMEN

Multiple pathways prevent DNA replication from occurring more than once per cell cycle. These pathways block re-replication by strictly controlling the activity of pre-replication complexes, which assemble at specific sites in the genome called origins. Here we show that mutations in the homologous histone 3 lysine 27 (H3K27) monomethyltransferases, ARABIDOPSIS TRITHORAX-RELATED PROTEIN5 (ATXR5) and ATXR6, lead to re-replication of specific genomic locations. Most of these locations correspond to transposons and other repetitive and silent elements of the Arabidopsis genome. These sites also correspond to high levels of H3K27 monomethylation, and mutation of the catalytic SET domain is sufficient to cause the re-replication defect. Mutation of ATXR5 and ATXR6 also causes upregulation of transposon expression and has pleiotropic effects on plant development. These results uncover a novel pathway that prevents over-replication of heterochromatin in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Replicación del ADN/fisiología , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Metiltransferasas/metabolismo , Secuencias de Aminoácidos , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Dominio Catalítico/genética , Metilación de ADN , Replicación del ADN/genética , Elementos Transponibles de ADN/genética , ADN de Plantas/análisis , ADN de Plantas/biosíntesis , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Genoma de Planta/genética , Heterocromatina/metabolismo , Histonas/química , Lisina/metabolismo , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Origen de Réplica
7.
PLoS Genet ; 8(7): e1002808, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22792077

RESUMEN

The relationship between epigenetic marks on chromatin and the regulation of DNA replication is poorly understood. Mutations of the H3K27 methyltransferase genes, Arabidopsis trithorax-related protein5 (ATXR5) and ATXR6, result in re-replication (repeated origin firing within the same cell cycle). Here we show that mutations that reduce DNA methylation act to suppress the re-replication phenotype of atxr5 atxr6 mutants. This suggests that DNA methylation, a mark enriched at the same heterochromatic regions that re-replicate in atxr5/6 mutants, is required for aberrant re-replication. In contrast, RNA sequencing analyses suggest that ATXR5/6 and DNA methylation cooperatively transcriptionally silence transposable elements (TEs). Hence our results suggest a complex relationship between ATXR5/6 and DNA methylation in the regulation of DNA replication and transcription of TEs.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Metilación de ADN/genética , Replicación del ADN , Heterocromatina , Metiltransferasas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Replicación del ADN/genética , Elementos Transponibles de ADN/genética , Epigénesis Genética/genética , Expresión Génica , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/genética , Recombinación Homóloga , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación , Origen de Réplica/genética , Análisis de Secuencia de ARN
8.
Plant Physiol ; 163(1): 243-52, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23899645

RESUMEN

Many naturally occurring Arabidopsis (Arabidopsis thaliana) are very late flowering, unless flowering is promoted by a prolonged period of cold (e.g. winter) known as vernalization. In these winter-annual strains, flowering prior to winter is blocked by the synergistic interaction of FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FLC acts as a strong floral inhibitor, and FRI is required for high levels of FLC expression. Vernalization, in turn, leads to an epigenetic down-regulation of FLC expression. Most rapid-cycling Arabidopsis carry loss-of-function mutations in FRI, leading to low levels of FLC and rapid flowering in the absence of vernalization. Recent work has shown that FRI acts as a scaffolding protein for the assembly of a FRI complex (FRI-C) that includes both general transcription and chromatin-modifying factors, as well as FRI-specific components such as FRI-LIKE1, FRI ESSENTIAL1 (FES1), SUPPRESSOR OF FRI4 (SUF4), and FLC EXPRESSOR (FLX). Here, we show that FLX-LIKE4 (FLX4) is a novel component of the FRI-C and is essential for the activation of FLC by FRI. Both FLX and FLX4 contain leucine zipper domains that facilitate interaction with FRI. In addition, FLX and FLX4 interact with each other and show synergistic transcription activation activity. Interestingly, we show that FLX, FLX4, FES1, and SUF4 are required for basal levels of FLC expression in the absence of FRI. Thus, components of the FRI-C play a role in the regulation of FLC expression in both FRI-containing winter annuals, as well as fri-null rapid-cycling strains.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Frío , Proteínas de Dominio MADS/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/fisiología , Estaciones del Año
9.
PLoS Genet ; 7(11): e1002366, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22102827

RESUMEN

RNA molecules such as small-interfering RNAs (siRNAs) and antisense RNAs (asRNAs) trigger chromatin silencing of target loci. In the model plant Arabidopsis, RNA-triggered chromatin silencing involves repressive histone modifications such as histone deacetylation, histone H3 lysine-9 methylation, and H3 lysine-27 monomethylation. Here, we report that two Arabidopsis homologs of the human histone-binding proteins Retinoblastoma-Associated Protein 46/48 (RbAp46/48), known as MSI4 (or FVE) and MSI5, function in partial redundancy in chromatin silencing of various loci targeted by siRNAs or asRNAs. We show that MSI5 acts in partial redundancy with FVE to silence FLOWERING LOCUS C (FLC), which is a crucial floral repressor subject to asRNA-mediated silencing, FLC homologs, and other loci including transposable and repetitive elements which are targets of siRNA-directed DNA Methylation (RdDM). Both FVE and MSI5 associate with HISTONE DEACETYLASE 6 (HDA6) to form complexes and directly interact with the target loci, leading to histone deacetylation and transcriptional silencing. In addition, these two genes function in de novo CHH (H = A, T, or C) methylation and maintenance of symmetric cytosine methylation (mainly CHG methylation) at endogenous RdDM target loci, and they are also required for establishment of cytosine methylation in the previously unmethylated sequences directed by the RdDM pathway. This reveals an important functional divergence of the plant RbAp46/48 relatives from animal counterparts.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Cromatina/genética , Silenciador del Gen , Proteínas de Dominio MADS/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/genética , Cromatina/metabolismo , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Flores/genética , Flores/crecimiento & desarrollo , Histona Desacetilasas/metabolismo , Proteínas de Dominio MADS/metabolismo , ARN Interferente Pequeño/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteína 4 de Unión a Retinoblastoma/genética , Homología de Secuencia de Aminoácido , Factores de Transcripción
10.
Proc Biol Sci ; 280(1763): 20131043, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23698015

RESUMEN

An evolutionary response to selection requires genetic variation; however, even if it exists, then the genetic details of the variation can constrain adaptation. In the simplest case, unlinked loci and uncorrelated phenotypes respond directly to multivariate selection and permit unrestricted paths to adaptive peaks. By contrast, 'antagonistic' pleiotropic loci may constrain adaptation by affecting variation of many traits and limiting the direction of trait correlations to vectors that are not favoured by selection. However, certain pleiotropic configurations may improve the conditions for adaptive evolution. Here, we present evidence that the Arabidopsis thaliana gene FRI (FRIGIDA) exhibits 'adaptive' pleiotropy, producing trait correlations along an axis that results in two adaptive strategies. Derived, low expression FRI alleles confer a 'drought escape' strategy owing to fast growth, low water use efficiency and early flowering. By contrast, a dehydration avoidance strategy is conferred by the ancestral phenotype of late flowering, slow growth and efficient water use during photosynthesis. The dehydration avoidant phenotype was recovered when genotypes with null FRI alleles were transformed with functional alleles. Our findings indicate that the well-documented effects of FRI on phenology result from differences in physiology, not only a simple developmental switch.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiología , Genes de Plantas , Pleiotropía Genética , Alelos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Evolución Biológica , Sequías , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Regulación de la Expresión Génica de las Plantas , Variación Genética , Genotipo , Fenotipo
11.
Nat Commun ; 14(1): 7484, 2023 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980416

RESUMEN

The H3 methyltransferases ATXR5 and ATXR6 deposit H3.1K27me1 to heterochromatin to prevent genomic instability and transposon re-activation. Here, we report that atxr5 atxr6 mutants display robust resistance to Geminivirus. The viral resistance is correlated with activation of DNA repair pathways, but not with transposon re-activation or heterochromatin amplification. We identify RAD51 and RPA1A as partners of virus-encoded Rep protein. The two DNA repair proteins show increased binding to heterochromatic regions and defense-related genes in atxr5 atxr6 vs wild-type plants. Consequently, the proteins have reduced binding to viral DNA in the mutant, thus hampering viral amplification. Additionally, RAD51 recruitment to the host genome arise via BRCA1, HOP2, and CYCB1;1, and this recruitment is essential for viral resistance in atxr5 atxr6. Thus, Geminiviruses adapt to healthy plants by hijacking DNA repair pathways, whereas the unstable genome, triggered by reduced H3.1K27me1, could retain DNA repairing proteins to suppress viral amplification in atxr5 atxr6.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Geminiviridae , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Heterocromatina/metabolismo , Geminiviridae/genética , Histonas/metabolismo , Replicación del ADN , Reparación del ADN/genética , Metiltransferasas/metabolismo
12.
Plant Physiol ; 155(3): 1425-34, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21209277

RESUMEN

The autonomous floral promotion pathway plays a key role in the regulation of flowering in rapid-cycling Arabidopsis (Arabidopsis thaliana) by providing constitutive repression of the floral inhibitor FLOWERING LOCUS C (FLC). As a result, autonomous pathway mutants contain elevated levels of FLC and are late flowering. Winter annual Arabidopsis, in contrast, contain functional alleles of FRIGIDA (FRI), which acts epistatically to the autonomous pathway to up-regulate FLC and delay flowering. To further explore the relationship between FRI and the autonomous pathway, we placed autonomous pathway mutants in a FRI-containing background. Unexpectedly, we found that a hypomorphic allele of the autonomous pathway gene fy (fy null alleles are embryo lethal) displayed background-specific effects on FLC expression and flowering time; in a rapid-cycling background fy mutants contained elevated levels of FLC and were late flowering, whereas in a winter annual background fy decreased FLC levels and partially suppressed the late-flowering phenotype conferred by FRI. Because FY has been shown to have homology to polyadenylation factors, we examined polyadenylation site selection in FLC transcripts. In wild type, two polyadenylation sites were detected and used at similar levels. In fy mutant backgrounds, however, the ratio of products was shifted to favor the distally polyadenylated form. FY has previously been shown to physically interact with another member of the autonomous pathway, FCA. Interestingly, we found that fy can partially suppress FLC expression in an fca null background and promote proximal polyadenylation site selection usage in the absence of FCA. Taken together, these results indicate novel and FCA-independent roles for FY in the regulation of FLC.


Asunto(s)
Alelos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Arabidopsis/ultraestructura , Flores/genética , Flores/ultraestructura , Endogamia , Proteínas de Dominio MADS/metabolismo , Mutación/genética , Poliadenilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Factores de Tiempo
13.
Mol Ecol ; 20(17): 3503-12, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21676045

RESUMEN

Species living in seasonal environments often adaptively time their reproduction in response to photoperiod cues. We characterized the expression of genes in the flowering-time regulatory network across wild populations of the common sunflower, Helianthus annuus, that we found to be adaptively differentiated for photoperiod response. The observed clinal variation was associated with changes at multiple hierarchical levels in multiple pathways. Paralogue-specific changes in FT homologue expression and tissue-specific changes in SOC1 homologue expression were associated with loss and reversal of plasticity, respectively, suggesting that redundancy and modularity are gene network characteristics easily exploited by natural selection to produce evolutionary innovation. Distinct genetic mechanisms contribute to convergent evolution of photoperiod responses within sunflower, suggesting regulatory network architecture does not impose strong constraints on the evolution of phenotypic plasticity.


Asunto(s)
Adaptación Fisiológica/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Helianthus/genética , Fotoperiodo , Evolución Molecular , Redes Reguladoras de Genes , Genes de Plantas , Variación Genética , Datos de Secuencia Molecular , Fenotipo , Sitios de Carácter Cuantitativo
14.
Plant Physiol ; 153(3): 1074-84, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20463090

RESUMEN

FLOWERING LOCUS C (FLC) is a key repressor of flowering in Arabidopsis (Arabidopsis thaliana) and is regulated, both positively and negatively, by posttranslational histone modifications. For example, vernalization (the promotion of flowering by cold temperatures) epigenetically silences FLC expression through repressive histone modifications such as histone H3 lysine-9 dimethylation (H3K9me2) and H3K27me3. In contrast, an RNA polymerase II-associated complex (Paf1c) activates FLC expression through increased H3K4 and H3K36 methylation. As a result of this regulation, FLC has become a useful model for the study of chromatin structure in Arabidopsis. Here we show that At3g22590 is the Arabidopsis homolog of the yeast (Saccharomyces cerevisiae) Paf1c component CDC73 and is enriched at FLC chromatin. In contrast to other Paf1c component mutants that exhibit pleiotropic developmental phenotypes, the effects of cdc73 mutations are primarily limited to flowering time, suggesting that CDC73 may only be required for Paf1c function at a subset of target genes. In rapid-cycling strains, cdc73 mutants showed reduced FLC mRNA levels and decreased H3K4me3 at the FLC locus. Interestingly, in late-flowering autonomous-pathway mutants, which contain higher levels of FLC, cdc73 mutations only suppressed FLC in a subset of mutants. H3K4me3 was uniformly reduced in all autonomous-pathway cdc73 double mutants tested; however, those showing reduced FLC expression also showed an increase in H3K27me3. Thus, CDC73 is required for high levels of FLC expression in a subset of autonomous-pathway-mutant backgrounds and functions both to promote activating histone modifications (H3K4me3) as well as preventing repressive ones (e.g. H3K27me3).


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cromatina/metabolismo , Flores/metabolismo , Proteínas de Dominio MADS/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Inmunoprecipitación de Cromatina , Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Sitios Genéticos/genética , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Dominio MADS/genética , Metilación , Mutación/genética , Fenotipo , Homología de Secuencia de Aminoácido , Regulación hacia Arriba/genética
15.
Curr Biol ; 31(23): 5377-5384.e5, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34666004

RESUMEN

Transcription initiation has long been considered a primary regulatory step in gene expression. Recent work, however, shows that downstream events, such as transcription elongation, can also play important roles.1-3 A well-characterized example from animals is promoter-proximal pausing, where transcriptionally engaged Pol II accumulates 30-50 bp downstream of the transcription start site (TSS) and is thought to enable rapid gene activation.2 Plants do not make widespread use of promoter-proximal pausing; however, in a phenomenon known as 3' pausing, a significant increase in Pol II is observed near the transcript end site (TES) of many genes.4-6 Previous work has shown that 3' pausing is promoted by the BORDER (BDR) family of negative transcription elongation factors. Here we show that BDR proteins play key roles in gene repression. Consistent with BDR proteins acting to slow or pause elongating Pol II, BDR-repressed genes are characterized by high levels of Pol II occupancy, yet low levels of mRNA. The BDR proteins physically interact with FPA,7 one of approximately two dozen genes collectively referred to as the autonomous floral-promotion pathway,8 which are necessary for the repression of the flowering time gene FLOWERING LOCUS C (FLC).9-11 In early-flowering strains, FLC expression is repressed by repressive histone modifications, such as histone H3 lysine 27 trimethylation (H3K27me3), thereby allowing the plants to flower early. These results suggest that the repression of transcription elongation by BDR proteins may allow for the temporary pausing of transcription or facilitate the long-term repression of genes by repressive histone modifications.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Histonas/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Transcripción Genética
16.
Elife ; 102021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33904405

RESUMEN

Genes involved in disease resistance are some of the fastest evolving and most diverse components of genomes. Large numbers of nucleotide-binding, leucine-rich repeat (NLR) genes are found in plant genomes and are required for disease resistance. However, NLRs can trigger autoimmunity, disrupt beneficial microbiota or reduce fitness. It is therefore crucial to understand how NLRs are controlled. Here, we show that the RNA-binding protein FPA mediates widespread premature cleavage and polyadenylation of NLR transcripts, thereby controlling their functional expression and impacting immunity. Using long-read Nanopore direct RNA sequencing, we resolved the complexity of NLR transcript processing and gene annotation. Our results uncover a co-transcriptional layer of NLR control with implications for understanding the regulatory and evolutionary dynamics of NLRs in the immune responses of plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas NLR/metabolismo , Proteínas de Unión al ARN/metabolismo , Terminación de la Transcripción Genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genes de Plantas/fisiología , ARN Mensajero/metabolismo
17.
Dev Biol ; 334(2): 492-502, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19406113

RESUMEN

Pax genes encode DNA binding proteins that play pivotal roles in the determination of complex tissues. Members of one subclass, Pax6, function as selector genes and play key roles in the retinal development of all seeing animals. Mutations within the Pax6 homologs including fly eyeless, mouse Small eye and human Pax6 lead to severe retinal defects in their respective systems. In Drosophila eyeless and twin of eyeless, play non-redundant roles in the developing retina. One particularly interesting characteristic of these genes is that, although expression of either gene can induce ectopic eye formation in non-retinal tissues, there are differences in the location and frequencies at which the eyes develop. eyeless induces much larger ectopic eyes, at higher frequencies, and in a broader range of tissues than twin of eyeless. In this report we describe a series of experiments conducted in both yeast and flies that has identified protein modules that are responsible for the differences in tissue transformation. These domains appear to contain transcriptional activator and repressor activity of distinct strengths. We propose a model in which the selective presence of these activities and their relative strengths accounts, in part, for the disparity to which ectopic eyes are induced in response to the forced expression of eyeless and twin of eyeless. The identification of both transcriptional activator and repressor activity within the Pax6 protein furthers our understanding of how this gene family regulates tissue determination.


Asunto(s)
Coristoma/genética , Ojo Compuesto de los Artrópodos , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Proteínas Represoras/genética , Transactivadores/genética , Secuencia de Aminoácidos , Estructuras Animales , Animales , Coristoma/patología , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Extremidades , Eliminación de Gen , Genitales , Datos de Secuencia Molecular , Especificidad de Órganos , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/fisiología , Saccharomyces cerevisiae , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transactivadores/deficiencia , Transactivadores/fisiología , Alas de Animales
18.
Nat Commun ; 10(1): 4359, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31554790

RESUMEN

Ensuring that one gene's transcription does not inappropriately affect the expression of its neighbors is a fundamental challenge to gene regulation in a genomic context. In plants, which lack homologs of animal insulator proteins, the mechanisms that prevent transcriptional interference are not well understood. Here we show that BORDER proteins are enriched in intergenic regions and prevent interference between closely spaced genes on the same strand by promoting the 3' pausing of RNA polymerase II at the upstream gene. In the absence of BORDER proteins, 3' pausing associated with the upstream gene is reduced and shifts into the promoter region of the downstream gene. This is consistent with a model in which BORDER proteins inhibit transcriptional interference by preventing RNA polymerase from intruding into the promoters of downstream genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , ARN Polimerasa II/genética , Factores de Elongación Transcripcional/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica/métodos , Mutación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Polimerasa II/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Factores de Elongación Transcripcional/metabolismo
19.
BMC Plant Biol ; 6: 10, 2006 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-16737527

RESUMEN

BACKGROUND: The circadian system drives pervasive biological rhythms in plants. Circadian clocks integrate endogenous timing information with environmental signals, in order to match rhythmic outputs to the local day/night cycle. Multiple signaling pathways affect the circadian system, in ways that are likely to be adaptively significant. Our previous studies of natural genetic variation in Arabidopsis thaliana accessions implicated FLOWERING LOCUS C (FLC) as a circadian-clock regulator. The MADS-box transcription factor FLC is best known as a regulator of flowering time. Its activity is regulated by many regulatory genes in the "autonomous" and vernalization-dependent flowering pathways. We tested whether these same pathways affect the circadian system. RESULTS: Genes in the autonomous flowering pathway, including FLC, were found to regulate circadian period in Arabidopsis. The mechanisms involved are similar, but not identical, to the control of flowering time. By mutant analyses, we demonstrate a graded effect of FLC expression upon circadian period. Related MADS-box genes had less effect on clock function. We also reveal an unexpected vernalization-dependent alteration of periodicity. CONCLUSION: This study has aided in the understanding of FLC's role in the clock, as it reveals that the network affecting circadian timing is partially overlapping with the floral-regulatory network. We also show a link between vernalization and circadian period. This finding may be of ecological relevance for developmental programming in other plant species.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Relojes Biológicos/fisiología , Ritmo Circadiano/fisiología , Flores/fisiología , Proteínas de Dominio MADS/metabolismo , Proteínas de Arabidopsis/genética , Dosificación de Gen , Proteínas de Dominio MADS/deficiencia , Proteínas de Dominio MADS/genética , Mutación/genética , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA