Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(1): e0304922, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36515553

RESUMEN

The survival of malaria parasites in the changing human blood environment largely depends on their ability to alter gene expression by epigenetic mechanisms. The active state of Plasmodium falciparum clonally variant genes (CVGs) is associated with euchromatin characterized by the histone mark H3K9ac, whereas the silenced state is characterized by H3K9me3-based heterochromatin. Expression switches are linked to euchromatin-heterochromatin transitions, but these transitions have not been characterized for the majority of CVGs. To define the heterochromatin distribution patterns associated with the alternative transcriptional states of CVGs, we compared H3K9me3 occupancy at a genome-wide level among several parasite subclones of the same genetic background that differed in the transcriptional state of many CVGs. We found that de novo heterochromatin formation or the complete disruption of a heterochromatin domain is a relatively rare event, and for the majority of CVGs, expression switches can be explained by the expansion or retraction of heterochromatin domains. We identified different modalities of heterochromatin changes linked to transcriptional differences, but despite this complexity, heterochromatin distribution patterns generally enable the prediction of the transcriptional state of specific CVGs. We also found that in some subclones, several var genes were simultaneously in an active state. Furthermore, the heterochromatin levels in the putative regulatory region of the gdv1 antisense noncoding RNA, a regulator of sexual commitment, varied between parasite lines with different sexual conversion rates. IMPORTANCE The malaria parasite P. falciparum is responsible for more than half a million deaths every year. P. falciparum clonally variant genes (CVGs) mediate fundamental host-parasite interactions and play a key role in parasite adaptation to fluctuations in the conditions of the human host. The expression of CVGs is regulated at the epigenetic level by changes in the distribution of a type of chromatin called heterochromatin. Here, we describe at a genome-wide level the changes in the heterochromatin distribution associated with the different transcriptional states of CVGs. Our results also reveal a likely role for heterochromatin at a particular locus in determining the parasite investment in transmission to mosquitoes. Additionally, this data set will enable the prediction of the transcriptional state of CVGs from epigenomic data, which is important for the study of parasite adaptation to the conditions of the host in natural malaria infections.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Animales , Humanos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Eucromatina/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Regulación de la Expresión Génica
2.
mBio ; 12(4): e0163621, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34340541

RESUMEN

Clonally variant genes (CVGs) play fundamental roles in the adaptation of Plasmodium falciparum to fluctuating conditions of the human host. However, their expression patterns under the natural conditions of the blood circulation have been characterized in detail for only a few specific gene families. Here, we provide a detailed characterization of the complete P. falciparum transcriptome across the full intraerythrocytic development cycle (IDC) at the onset of a blood infection in malaria-naive human volunteers. We found that the vast majority of transcriptional differences between parasites obtained from the volunteers and the parental parasite line maintained in culture occurred in CVGs. In particular, we observed a major increase in the transcript levels of most genes of the pfmc-2tm and gbp families and of specific genes of other families, such as phist, hyp10, rif, or stevor, in addition to previously reported changes in var and clag3 gene expression. Increased transcript levels of individual pfmc-2tm, rif, and stevor genes involved activation in small subsets of parasites. Large transcriptional differences correlated with changes in the distribution of heterochromatin, confirming their epigenetic nature. Furthermore, the similar expression of several CVGs between parasites collected at different time points along the blood infection suggests that the epigenetic memory for multiple CVG families is lost during transmission stages, resulting in a reset of their transcriptional state. Finally, the CVG expression patterns observed in a volunteer likely infected by a single sporozoite suggest that new epigenetic patterns are established during liver stages. IMPORTANCE The ability of malaria parasites to adapt to changes in the human blood environment, where they produce long-term infection associated with clinical symptoms, is fundamental for their survival. CVGs, regulated at the epigenetic level, play a major role in this adaptive process, as changes in the expression of these genes result in alterations in the antigenic and functional properties of the parasites. However, how these genes are expressed under the natural conditions of the human circulation and how their expression is affected by passage through transmission stages are not well understood. Here, we provide a comprehensive characterization of the expression patterns of these genes at the onset of human blood infections, which reveals major differences with in vitro-cultured parasites. We also show that, during transmission stages, the previous expression patterns for many CVG families are lost, and new patterns are established.


Asunto(s)
Perfilación de la Expresión Génica , Variación Genética , Interacciones Huésped-Parásitos/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Antígenos de Protozoos/inmunología , Interacciones Huésped-Parásitos/inmunología , Humanos , Malaria Falciparum/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Transcriptoma
3.
Nat Microbiol ; 6(9): 1163-1174, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34400833

RESUMEN

Periodic fever is a characteristic clinical feature of human malaria, but how parasites survive febrile episodes is not known. Although the genomes of Plasmodium species encode a full set of chaperones, they lack the conserved eukaryotic transcription factor HSF1, which activates the expression of chaperones following heat shock. Here, we show that PfAP2-HS, a transcription factor in the ApiAP2 family, regulates the protective heat-shock response in Plasmodium falciparum. PfAP2-HS activates the transcription of hsp70-1 and hsp90 at elevated temperatures. The main binding site of PfAP2-HS in the entire genome coincides with a tandem G-box DNA motif in the hsp70-1 promoter. Engineered parasites lacking PfAP2-HS have reduced heat-shock survival and severe growth defects at 37 °C but not at 35 °C. Parasites lacking PfAP2-HS also have increased sensitivity to imbalances in protein homeostasis (proteostasis) produced by artemisinin, the frontline antimalarial drug, or the proteasome inhibitor epoxomicin. We propose that PfAP2-HS contributes to the maintenance of proteostasis under basal conditions and upregulates specific chaperone-encoding genes at febrile temperatures to protect the parasite against protein damage.


Asunto(s)
Fiebre/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Factores de Transcripción/metabolismo , Antimaláricos/farmacología , Artemisininas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Calor , Humanos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Proteostasis/efectos de los fármacos , Proteínas Protozoarias/genética , Factores de Transcripción/genética
4.
Sci Adv ; 6(24): eaaz5057, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32577509

RESUMEN

Malaria transmission requires that some asexual parasites convert into sexual forms termed gametocytes. The initial stages of sexual development, including sexually committed schizonts and sexual rings, remain poorly characterized, mainly because they are morphologically identical to their asexual counterparts and only a small subset of parasites undergo sexual development. Here, we describe a system for controlled sexual conversion in the human malaria parasite Plasmodium falciparum, based on conditional expression of the PfAP2-G transcription factor. Using this system, ~90 percent of the parasites converted into sexual forms upon induction, enabling the characterization of committed and early sexual stages without further purification. We characterized sexually committed schizonts and sexual rings at the transcriptomic and phenotypic levels, which revealed down-regulation of genes involved in solute transport upon sexual commitment, among other findings. The new inducible lines will facilitate the study of early sexual stages at additional levels, including multiomic characterization and drug susceptibility assays.


Asunto(s)
Malaria , Parásitos , Animales , Regulación de la Expresión Génica , Humanos , Malaria/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Factores de Transcripción/metabolismo
5.
Vaccines (Basel) ; 8(1)2020 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-32188062

RESUMEN

African animal trypanosomiasis is caused by vector-transmitted parasites of the genus Trypanosoma. T. congolense and T. brucei brucei are predominant in Africa; T. evansi and T. vivax in America and Asia. They have in common an extracellular lifestyle and livestock tropism, which provokes huge economic losses in regions where vectors are endemic. There are licensed drugs to treat the infections, but adherence to treatment is poor and appearance of resistances common. Therefore, the availability of a prophylactic vaccine would represent a major breakthrough towards the management and control of the disease. Selection of the most appropriate antigens for its development is a bottleneck step, especially considering the limited resources allocated. Herein we propose a vaccine strategy based on multiple epitopes from multiple antigens to counteract the parasites´ biological complexity. Epitopes were identified by computer-assisted genome-wide screenings, considering sequence conservation criteria, antigens annotation and sub-cellular localization, high binding affinity to antigen presenting molecules, and lack of cross-reactivity to proteins in cattle and other breeding species. We ultimately provide 31 B-cell, 8 CD4 T-cell, and 15 CD8 T-cell epitope sequences from 30 distinct antigens for the prospective design of a genetic ensemble vaccine against the four trypanosome species responsible for African animal trypanosomiasis.

6.
Front Immunol ; 10: 3124, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32082303

RESUMEN

[This corrects the article DOI: 10.3389/fimmu.2019.02698.].

7.
Front Immunol ; 10: 2698, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31824493

RESUMEN

Trypanosoma cruzi infection causes Chagas disease, which affects 7 million people worldwide. Two drugs are available to treat it: benznidazole and nifurtimox. Although both are efficacious against the acute stage of the disease, this is usually asymptomatic and goes undiagnosed and untreated. Diagnosis is achieved at the chronic stage, when life-threatening heart and/or gut tissue disruptions occur in ~30% of those chronically infected. By then, the drugs' efficacy is reduced, but not their associated high toxicity. Given current deficiencies in diagnosis and treatment, a vaccine to prevent infection and/or the development of symptoms would be a breakthrough in the management of the disease. Current vaccine candidates are mostly based on the delivery of single antigens or a few different antigens. Nevertheless, due to the high biological complexity of the parasite, targeting as many antigens as possible would be desirable. In this regard, an epitope-based vaccine design could be a well-suited approach. With this aim, we have gone through publicly available databases to identify T. cruzi epitopes from several antigens. By means of a computer-aided strategy, we have prioritized a set of epitopes based on sequence conservation criteria, projected population coverage of Latin American population, and biological features of their antigens of origin. Fruit of this analysis, we provide a selection of CD8+ T cell, CD4+ T cell, and B cell epitopes that have <70% identity to human or human microbiome protein sequences and represent the basis toward the development of an epitope-based vaccine against T. cruzi.


Asunto(s)
Antígenos de Protozoos/inmunología , Enfermedad de Chagas/prevención & control , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/inmunología , Vacunas Antiprotozoos/inmunología , Enfermedad de Chagas/inmunología , Simulación por Computador , Diseño de Fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA