RESUMEN
Researchers have reported the benefits of feeding rumen-protected methionine (RPM) during the peripartum on the health parameters of dairy cows. Rumen-protected Met has reportedly improved milk yield, milk components, and liver health, but the literature is scarce on its effects in commercial herds. Therefore, we aimed to determine the effects of feeding RPM (Smartamine M, Adisseo Inc., Antony, France) prepartum (8 g/cow per day) and postpartum (15 g/cow per day) on performance, metabolic profile, and culling rate of Holstein cows in a commercial herd. One hundred sixty-six (n = 166) Holstein cows, 58 nulliparous and 108 parous, were randomly assigned to 1 of 2 dietary treatments, consisting of TMR top-dressed with RPM (RPMet; 2.35% and 2.24% Met of MP for close-up and fresh cows, respectively) or without (control [CON] 2.03% and 1.89% Met of MP for close-up and fresh cows, respectively), fed from 21 ± 6 d prepartum until 16 ± 5 d postpartum. From 17 DIM until dry-off, all cows received RPMet. Daily milk yield was recorded, and milk samples were collected in the first and second weeks after calving to determine their composition. Blood samples were collected before the morning feeding on -14, -7, +1, +7, and +14 d relative to calving. Mortality and morbidity were recorded during the first 60 DIM. Cows supplemented with RPMet had greater milk yield during the first 16 DIM (31.76 vs. 30.37 kg/d; SEM = 1.04, respectively), and had greater milk fat content (4.45 vs. 4.10%; SEM = 0.11, respectively), but not milk total protein (3.47 vs. 3.39%; SEM = 0.04, respectively) and casein contents (2.74 vs. 2.66%; SEM = 0.04, respectively) than CON cows. Cows in RPMet had increased plasma Met concentrations than cows in CON (24.9 vs. 21.0 µmol/L; SEM = 1.2, respectively). Although morbidity was similar between treatments, the culling rate from calving until 60 DIM was lower for RPMet cows than for CON cows (2.4% vs. 12.1%; SEM = 0.02). In conclusion, cows receiving RPMet have greater milk yield, improved milk fat content, and a lower culling rate at 60 DIM than CON cows.
Asunto(s)
Alimentación Animal , Dieta , Lactancia , Metionina , Leche , Periodo Periparto , Rumen , Animales , Bovinos , Metionina/metabolismo , Metionina/administración & dosificación , Femenino , Leche/química , Leche/metabolismo , Dieta/veterinaria , Rumen/metabolismo , Alimentación Animal/análisisRESUMEN
Adipose tissue (AT) expands through both hyperplasia and hypertrophy. During adipogenesis, adipose stromal and progenitor cells (ASPCs) proliferate and then accumulate lipids, influenced by the local AT microenvironment. Increased adipogenic capacity is desirable as it relates to metabolic health, especially in transition dairy cows where excess free fatty acids in circulation can compromise metabolic and immune health. Our aim was to elucidate the depot-specific adipogenic capacity and ECM properties of subcutaneous (SAT) and visceral (VAT) AT of dairy cows and define how the ECM affects adipogenesis. Flank SAT and omental VAT samples were collected from dairy cows in a local abattoir. Tissue samples were utilized for transcriptome analysis, targeted RT-qPCR for adipogenic markers, adipocyte sizing, assessment of viscoelastic properties and collagen accumulation, and then decellularized for native ECM isolation. For in vitro analyses, SAT and VAT samples were digested via collagenase, and ASPCs cultured for metabolic analysis. Adipogenic capacity was assessed by adipocyte size, quantification of ASPCs in stromal vascular fraction (SVF) via flow cytometry, and gene expression of adipogenic markers. In addition, functional assays including lipolysis and glucose uptake were performed to further characterize SAT and VAT adipocyte metabolic function. Data were analyzed using SAS (version 9.4; SAS institute Inc., Cary, NC) and GraphPad Prism 9. Subcutaneous AT adipogenic capacity was greater than VAT's, as indicated by increased ASPCs abundance, increased magnitude of adipocyte ADIPOQ and FASN expression during differentiation, and higher adipocyte lipid accumulation as shown by an increased proportion of larger adipocytes and abundance of lipid droplets. Rheologic analysis revealed that VAT is stiffer than SAT, which led us to hypothesize that differences between SAT and VAT adipogenic capacity were partly mediated by depot-specific ECM microenvironment. Thus, we studied depot-specific ECM-adipocyte crosstalk using a 3D model with native ECM (decellularized AT). Subcutaneous AT and VAT ASPCs were cultured and differentiated into adipocytes within depot-matched and mis-matched ECM for 14d, followed by ADIPOQ expression analysis. Visceral AT ECM impaired ADIPOQ expression in SAT cells. Our results demonstrate that SAT is more adipogenic than VAT and suggest that divergences between SAT and VAT adipogenesis are partially mediated by the depot-specific ECM microenvironment.