Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613663

RESUMEN

Mutations in GPR179 are one of the most common causes of autosomal recessive complete congenital stationary night blindness (cCSNB). This retinal disease is characterized in patients by impaired dim and night vision, associated with other ocular symptoms, including high myopia. cCSNB is caused by a complete loss of signal transmission from photoreceptors to ON-bipolar cells. In this study, we hypothesized that the lack of Gpr179 and the subsequent impaired ON-pathway could lead to myopic features in a mouse model of cCSNB. Using ultra performance liquid chromatography, we show that adult Gpr179-/- mice have a significant decrease in both retinal dopamine and 3,4-dihydroxyphenylacetic acid, compared to Gpr179+/+ mice. This alteration of the dopaminergic system is thought to be correlated with an increased susceptibility to lens-induced myopia but does not affect the natural refractive development. Altogether, our data added a novel myopia model, which could be used to identify therapeutic interventions.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Miopía , Ceguera Nocturna , Ratones , Animales , Electrorretinografía/métodos , Ceguera Nocturna/genética , Retina , Miopía/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Receptores Acoplados a Proteínas G/genética
2.
Clin Genet ; 99(2): 298-302, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33124039

RESUMEN

Rod-cone dystrophy (RCD), also called retinitis pigmentosa, is characterized by rod followed by cone photoreceptor degeneration, leading to gradual visual loss. Mutations in over 65 genes have been associated with non-syndromic RCD explaining 60% to 70% of cases, with novel gene defects possibly accounting for the unsolved cases. Homozygosity mapping and whole-exome sequencing applied to a case of autosomal recessive non-syndromic RCD from a consanguineous union identified a homozygous variant in WDR34. Mutations in WDR34 have been previously associated with severe ciliopathy syndromes possibly associated with a retinal dystrophy. This is the first report of a homozygous mutation in WDR34 associated with non-syndromic RCD.


Asunto(s)
Proteínas Portadoras/genética , Distrofias de Conos y Bastones/genética , Adulto , Estudios de Asociación Genética , Humanos , Masculino , Linaje , Repeticiones WD40
3.
Retina ; 41(4): 872-881, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32826790

RESUMEN

PURPOSE: To reappraise the presentation and the course of ITM2B-related retinal dystrophy and give further insights into ITM2B expression in the retina. METHODS: The clinical data of nine subjects with ITM2B-related retinal dystrophy were retrospectively reviewed. The genetic mutation was assessed for its influence on splicing in cultured fibroblasts. The cellular expression of ITM2B within the inner retina was investigated in wild-type mice through mRNA in situ hybridization. RESULTS: All patients complained of decreased vision and mild photophobia around their twenties-thirties. The peculiar feature was the hyperreflective material on optical coherence tomography within the inner retina and the central outer nuclear layer with thinning of the retinal nerve fiber layer. Although retinal imaging revealed very mild or no changes over the years, the visual acuity slowly decreased with about one Early Treatment Diabetic Retinopathy Study letter per year. Finally, full-field electroretinography showed a mildly progressive inner retinal and cone dysfunction. ITM2B mRNA is expressed in all cellular types of the inner retina. Disease mechanism most likely involves mutant protein misfolding and/or modified protein interaction rather than misplicing. CONCLUSION: ITM2B-related retinal dystrophy is a peculiar, rare, slowly progressive retinal degeneration. Functional examinations (full-field electroretinography and visual acuity) seem more accurate in monitoring the progression in these patients because imaging tends to be stable over the years.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Distrofias Retinianas/genética , Anciano , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Femenino , Regulación de la Expresión Génica/fisiología , Humanos , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Imagen Óptica , Fenotipo , ARN Mensajero/genética , Retina/fisiopatología , Distrofias Retinianas/diagnóstico por imagen , Distrofias Retinianas/fisiopatología , Estudios Retrospectivos , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología
4.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922602

RESUMEN

Mutations in GPR179 lead to autosomal recessive complete congenital stationary night blindness (cCSNB). This condition represents a signal transmission defect from the photoreceptors to the ON-bipolar cells. To confirm the phenotype, better understand the pathogenic mechanism in vivo, and provide a model for therapeutic approaches, a Gpr179 knock-out mouse model was genetically and functionally characterized. We confirmed that the insertion of a neo/lac Z cassette in intron 1 of Gpr179 disrupts the same gene. Spectral domain optical coherence tomography reveals no obvious retinal structure abnormalities. Gpr179 knock-out mice exhibit a so-called no-b-wave (nob) phenotype with severely reduced b-wave amplitudes in the electroretinogram. Optomotor tests reveal decreased optomotor responses under scotopic conditions. Consistent with the genetic disruption of Gpr179, GPR179 is absent at the dendritic tips of ON-bipolar cells. While proteins of the same signal transmission cascade (GRM6, LRIT3, and TRPM1) are correctly localized, other proteins (RGS7, RGS11, and GNB5) known to regulate GRM6 are absent at the dendritic tips of ON-bipolar cells. These results add a new model of cCSNB, which is important to better understand the role of GPR179, its implication in patients with cCSNB, and its use for the development of therapies.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/patología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Miopía/genética , Miopía/patología , Ceguera Nocturna/genética , Ceguera Nocturna/patología , Receptores Acoplados a Proteínas G/fisiología , Retina/patología , Animales , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fenotipo , Retina/metabolismo , Transducción de Señal
5.
Int J Mol Sci ; 22(15)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34360642

RESUMEN

The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.


Asunto(s)
Distrofias de Conos y Bastones/patología , Genes Recesivos , Proteínas Mitocondriales/genética , Mutación , Canales de Potasio/genética , Adulto , Distrofias de Conos y Bastones/etiología , Distrofias de Conos y Bastones/metabolismo , Femenino , Humanos , Masculino , Linaje , Fenotipo
6.
Hum Mutat ; 40(6): 765-787, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30825406

RESUMEN

Inherited retinal disorders (IRD) represent clinically and genetically heterogeneous diseases. To date, pathogenic variants have been identified in ~260 genes. Albeit that many genes are implicated in IRD, for 30-50% of the cases, the gene defect is unknown. These cases may be explained by novel gene defects, by overlooked structural variants, by variants in intronic, promoter or more distant regulatory regions, and represent synonymous variants of known genes contributing to the dysfunction of the respective proteins. Patients with one subgroup of IRD, namely incomplete congenital stationary night blindness (icCSNB), show a very specific phenotype. The major cause of this condition is the presence of a hemizygous pathogenic variant in CACNA1F. A comprehensive study applying direct Sanger sequencing of the gene-coding regions, exome and genome sequencing applied to a large cohort of patients with a clinical diagnosis of icCSNB revealed indeed that seven of the 189 CACNA1F-related cases have intronic and synonymous disease-causing variants leading to missplicing as validated by minigene approaches. These findings highlight that gene-locus sequencing may be a very efficient method in detecting disease-causing variants in clinically well-characterized patients with a diagnosis of IRD, like icCSNB.


Asunto(s)
Canales de Calcio Tipo L/genética , Enfermedades Hereditarias del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación , Miopía/genética , Ceguera Nocturna/genética , Análisis de Secuencia de ADN/métodos , Predisposición Genética a la Enfermedad , Hemicigoto , Humanos , Intrones , Masculino , Linaje , Empalme del ARN , Mutación Silenciosa
7.
Am J Hum Genet ; 98(5): 1011-1019, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27063057

RESUMEN

Congenital stationary night blindness (CSNB) is a heterogeneous group of non-progressive inherited retinal disorders with characteristic electroretinogram (ERG) abnormalities. Riggs and Schubert-Bornschein are subtypes of CSNB and demonstrate distinct ERG features. Riggs CSNB demonstrates selective rod photoreceptor dysfunction and occurs due to mutations in genes encoding proteins involved in rod phototransduction cascade; night blindness is the only symptom and eye examination is otherwise normal. Schubert-Bornschein CSNB is a consequence of impaired signal transmission between the photoreceptors and bipolar cells. Schubert-Bornschein CSNB is subdivided into complete CSNB with an ON bipolar signaling defect and incomplete CSNB with both ON and OFF pathway involvement. Both subtypes are associated with variable degrees of night blindness or photophobia, reduced visual acuity, high myopia, and nystagmus. Whole-exome sequencing of a family screened negative for mutations in genes associated with CSNB identified biallelic mutations in the guanine nucleotide-binding protein subunit beta-3 gene (GNB3). Two siblings were compound heterozygous for a deletion (c.170_172delAGA [p.Lys57del]) and a nonsense mutation (c.1017G>A [p.Trp339(∗)]). The maternal aunt was homozygous for the nonsense mutation (c.1017G>A [p.Trp339(∗)]). Mutational analysis of GNB3 in a cohort of 58 subjects with CSNB identified a sporadic case individual with a homozygous GNB3 mutation (c.200C>T [p.Ser67Phe]). GNB3 encodes the ß subunit of G protein heterotrimer (Gαßγ) and is known to modulate ON bipolar cell signaling and cone transducin function in mice. Affected human subjects showed an unusual CSNB phenotype with variable degrees of ON bipolar dysfunction and reduced cone sensitivity. This unique retinal disorder with dual anomaly in visual processing expands our knowledge about retinal signaling.


Asunto(s)
Enfermedades Hereditarias del Ojo/etiología , Genes Recesivos/genética , Enfermedades Genéticas Ligadas al Cromosoma X/etiología , Proteínas de Unión al GTP Heterotriméricas/genética , Mutación/genética , Miopía/etiología , Ceguera Nocturna/etiología , Alelos , Secuencia de Aminoácidos , Animales , Estudios de Casos y Controles , Electrorretinografía , Enfermedades Hereditarias del Ojo/patología , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Genotipo , Proteínas de Unión al GTP Heterotriméricas/química , Homocigoto , Humanos , Masculino , Ratones , Persona de Mediana Edad , Miopía/patología , Ceguera Nocturna/patología , Linaje , Fenotipo , Conformación Proteica , Homología de Secuencia de Aminoácido , Agudeza Visual/genética
8.
Int J Mol Sci ; 20(19)2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31574917

RESUMEN

Phenotypes observed in a large cohort of patients with cone and cone-rod dystrophies (COD/CORDs) are described based on multimodal retinal imaging features in order to help in analyzing massive next-generation sequencing data. Structural abnormalities of 58 subjects with molecular diagnosis of COD/CORDs were analyzed through specific retinal imaging including spectral-domain optical coherence tomography (SD-OCT) and fundus autofluorescence (BAF/IRAF). Findings were analyzed with the underlying genetic defects. A ring of increased autofluorescence was mainly observed in patients with CRX and GUCY2D mutations (33% and 22% of cases respectively). "Speckled" autofluorescence was observed with mutations in three different genes (ABCA4 64%; C2Orf71 and PRPH2, 18% each). Peripapillary sparing was only found in association with mutations in ABCA4, although only present in 40% of such genotypes. Regarding SD-OCT, specific outer retinal abnormalities were more commonly observed in particular genotypes: focal retrofoveal interruption and GUCY2D mutations (50%), foveal sparing and CRX mutations (50%), and outer retinal atrophy associated with hyperreflective dots and ABCA4 mutations (69%). This study outlines the phenotypic heterogeneity of COD/CORDs hampering statistical correlations. A larger study correlating retinal imaging with genetic results is necessary to identify specific clinical features that may help in selecting pathogenic variants generated by high-throughput sequencing.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Fenotipo , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Adolescente , Adulto , Alelos , Biomarcadores , Niño , Preescolar , Distrofias de Conos y Bastones/diagnóstico , Distrofias de Conos y Bastones/genética , Electrorretinografía , Femenino , Fondo de Ojo , Estudios de Asociación Genética/métodos , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación , Células Fotorreceptoras Retinianas Conos/metabolismo , Tomografía de Coherencia Óptica , Adulto Joven
9.
Am J Hum Genet ; 94(4): 625-33, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24680887

RESUMEN

Rod-cone dystrophy (RCD), also known as retinitis pigmentosa, is a progressive inherited retinal disorder characterized by photoreceptor cell death and genetic heterogeneity. Mutations in many genes have been implicated in the pathophysiology of RCD, but several others remain to be identified. Herein, we applied whole-exome sequencing to a consanguineous family with one subject affected with RCD and identified a homozygous nonsense mutation, c.226C>T (p.Arg76(∗)), in KIZ, which encodes centrosomal protein kizuna. Subsequent Sanger sequencing of 340 unrelated individuals with sporadic and autosomal-recessive RCD identified two other subjects carrying pathogenic variants in KIZ: one with the same homozygous nonsense mutation (c.226C>T [p.Arg76(∗)]) and another with compound-heterozygous mutations c.119_122delAACT (p.Lys40Ilefs(∗)14) and c.52G>T (p.Glu18(∗)). Transcriptomic analysis in mice detected mRNA levels of the mouse ortholog (Plk1s1) in rod photoreceptors, as well as its decreased expression when photoreceptors degenerated in rd1 mice. The presence of the human KIZ transcript was confirmed by quantitative RT-PCR in the retina, the retinal pigment epithelium, fibroblasts, and whole-blood cells (highest expression was in the retina). RNA in situ hybridization demonstrated the presence of Plk1s1 mRNA in the outer nuclear layer of the mouse retina. Immunohistology revealed KIZ localization at the basal body of the cilia in human fibroblasts, thus shedding light on another ciliary protein implicated in autosomal-recessive RCD.


Asunto(s)
Proteínas de Ciclo Celular/genética , Exoma , Genes Recesivos , Células Fotorreceptoras Retinianas Bastones/patología , Retinitis Pigmentosa/genética , Animales , Codón sin Sentido , Femenino , Humanos , Masculino , Ratones , Linaje , Transcriptoma
10.
Immunity ; 29(6): 922-33, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-19013083

RESUMEN

Mice with mutations in the gene encoding Fas ligand (FasL) develop lymphoproliferation and systemic autoimmune diseases. However, the cellular subset responsible for the prevention of autoimmunity in FasL-deficient mice remains undetermined. Here, we show that mice with FasL loss on either B or T cells had identical life span as littermates, and both genotypes developed signs of autoimmunity. In addition, we show that T cell-dependent death was vital for the elimination of aberrant T cells and for controlling the numbers of B cells and dendritic cells that dampen autoimmune responses. Furthermore, we show that the loss of FasL on T cells affected the follicular dentritic cell network in the germinal centers, leading to an impaired recall response to exogenous antigen. These results disclose the distinct roles of cellular subsets in FasL-dependent control of autoimmunity and provide further insight into the role of FasL in humoral immunity.


Asunto(s)
Enfermedades Autoinmunes/inmunología , Linfocitos B/inmunología , Células Dendríticas/inmunología , Proteína Ligando Fas/inmunología , Linfocitos T/inmunología , Animales , Antígenos/inmunología , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Linfocitos B/citología , Linfocitos B/metabolismo , Células Dendríticas/metabolismo , Proteína Ligando Fas/genética , Enfermedades Linfáticas/genética , Enfermedades Linfáticas/inmunología , Enfermedades Linfáticas/patología , Ratones , Ratones Noqueados , Linfocitos T/citología , Linfocitos T/metabolismo , Receptor fas/inmunología , Receptor fas/metabolismo
11.
Hum Mol Genet ; 23(2): 491-501, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24026677

RESUMEN

Inherited retinal diseases are a group of clinically and genetically heterogeneous disorders for which a significant number of cases remain genetically unresolved. Increasing knowledge on underlying pathogenic mechanisms with precise phenotype-genotype correlation is, however, critical for establishing novel therapeutic interventions for these yet incurable neurodegenerative conditions. We report phenotypic and genetic characterization of a large family presenting an unusual autosomal dominant retinal dystrophy. Phenotypic characterization revealed a retinopathy dominated by inner retinal dysfunction and ganglion cell abnormalities. Whole-exome sequencing identified a missense variant (c.782A>C, p.Glu261Ala) in ITM2B coding for Integral Membrane Protein 2B, which co-segregates with the disease in this large family and lies within the 24.6 Mb interval identified by microsatellite haplotyping. The physiological role of ITM2B remains unclear and has never been investigated in the retina. RNA in situ hybridization reveals Itm2b mRNA in inner nuclear and ganglion cell layers within the retina, with immunostaining demonstrating the presence of the corresponding protein in the same layers. Furthermore, ITM2B in the retina co-localizes with its known interacting partner in cerebral tissue, the amyloid ß precursor protein, critical in Alzheimer disease physiopathology. Interestingly, two distinct ITM2B mutations, both resulting in a longer protein product, had already been reported in two large autosomal dominant families with Alzheimer-like dementia but never in subjects with isolated retinal diseases. These findings should better define pathogenic mechanism(s) associated with ITM2B mutations underlying dementia or retinal disease and add a new candidate to the list of genes involved in inherited retinal dystrophies.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Glicoproteínas de Membrana/genética , Mutación Missense , Retina/metabolismo , Distrofias Retinianas/genética , Distrofias Retinianas/patología , Proteínas Adaptadoras Transductoras de Señales , Anciano , Demencia/genética , Exoma , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Fenotipo , Retina/patología , Distrofias Retinianas/metabolismo , Análisis de Secuencia de ADN
12.
Am J Hum Genet ; 92(1): 67-75, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23246293

RESUMEN

Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440(∗)]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384(∗)]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs(∗)59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated.


Asunto(s)
Enfermedades Hereditarias del Ojo/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Proteínas de la Membrana/genética , Miopía/genética , Ceguera Nocturna/genética , Polimorfismo Genético , Exoma , Femenino , Humanos , Masculino , Proteínas de la Membrana/análisis , Persona de Mediana Edad , Mutación , Retina/química
13.
Eur J Neurosci ; 42(3): 1966-75, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25997951

RESUMEN

Mutations in LRIT3 lead to complete congenital stationary night blindness (cCSNB). The exact role of LRIT3 in ON-bipolar cell signaling cascade remains to be elucidated. Recently, we have characterized a novel mouse model lacking Lrit3 [no b-wave 6, (Lrit3(nob6/nob6) )], which displays similar abnormalities to patients with cCSNB with LRIT3 mutations. Here we compare the localization of components of the ON-bipolar cell signaling cascade in wild-type and Lrit3(nob6/nob6) retinal sections by immunofluorescence confocal microscopy. An anti-LRIT3 antibody was generated. Immunofluorescent staining of LRIT3 in wild-type mice revealed a specific punctate labeling in the outer plexiform layer (OPL), which was absent in Lrit3(nob6/nob6) mice. LRIT3 did not co-localize with ribeye or calbindin but co-localized with mGluR6. TRPM1 staining was severely decreased at the dendritic tips of all depolarizing bipolar cells in Lrit3(nob6/nob6) mice. mGluR6, GPR179, RGS7, RGS11 and Gß5 immunofluorescence was absent at the dendritic tips of cone ON-bipolar cells in Lrit3(nob6/nob6) mice, while it was present at the dendritic tips of rod bipolar cells. Furthermore, peanut agglutinin (PNA) labeling was severely reduced in the OPL in Lrit3(nob6/nob6) mice. This study confirmed the localization of LRIT3 at the dendritic tips of depolarizing bipolar cells in mouse retina and demonstrated the dependence of TRPM1 localization on the presence of LRIT3. As tested components of the ON-bipolar cell signaling cascade and PNA revealed disrupted localization, an additional function of LRIT3 in cone synapse formation is suggested. These results point to a possibly different regulation of the mGluR6 signaling cascade between rod and cone ON-bipolar cells.


Asunto(s)
Proteínas de la Membrana/metabolismo , Células Bipolares de la Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Sinapsis/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Anticuerpos , Dendritas/metabolismo , Femenino , Masculino , Proteínas de la Membrana/inmunología , Ratones , Transporte de Proteínas , Conejos , Receptores de Glutamato Metabotrópico/metabolismo
14.
Am J Hum Genet ; 90(2): 321-30, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22325361

RESUMEN

Congenital stationary night blindness (CSNB) is a heterogeneous retinal disorder characterized by visual impairment under low light conditions. This disorder is due to a signal transmission defect from rod photoreceptors to adjacent bipolar cells in the retina. Two forms can be distinguished clinically, complete CSNB (cCSNB) or incomplete CSNB; the two forms are distinguished on the basis of the affected signaling pathway. Mutations in NYX, GRM6, and TRPM1, expressed in the outer plexiform layer (OPL) lead to disruption of the ON-bipolar cell response and have been seen in patients with cCSNB. Whole-exome sequencing in cCSNB patients lacking mutations in the known genes led to the identification of a homozygous missense mutation (c.1807C>T [p.His603Tyr]) in one consanguineous autosomal-recessive cCSNB family and a homozygous frameshift mutation in GPR179 (c.278delC [p.Pro93Glnfs(∗)57]) in a simplex male cCSNB patient. Additional screening with Sanger sequencing of 40 patients identified three other cCSNB patients harboring additional allelic mutations in GPR179. Although, immunhistological studies revealed Gpr179 in the OPL in wild-type mouse retina, Gpr179 did not colocalize with specific ON-bipolar markers. Interestingly, Gpr179 was highly concentrated in horizontal cells and Müller cell endfeet. The involvement of these cells in cCSNB and the specific function of GPR179 remain to be elucidated.


Asunto(s)
Exoma , Mutación , Miopía/genética , Ceguera Nocturna/genética , Receptores Acoplados a Proteínas G/genética , Alelos , Animales , Electrorretinografía/métodos , Enfermedades Hereditarias del Ojo , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X , Heterogeneidad Genética , Técnicas de Genotipaje/métodos , Heterocigoto , Homocigoto , Humanos , Masculino , Ratones , Fenotipo , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Proteoglicanos/genética , Receptores de Glutamato Metabotrópico/genética , Retina/anomalías , Canales Catiónicos TRPM/genética
15.
Invest Ophthalmol Vis Sci ; 65(11): 18, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39250117

RESUMEN

Purpose: To determine whether the Lrit3-/- mouse model of complete congenital stationary night blindness with an ON-pathway defect harbors myopic features and whether the genetic defect influences the recovery from lens-induced myopia. Methods: Retinal levels of dopamine (DA) and 3,4 dihydroxyphenylacetic acid (DOPAC) from adult isolated Lrit3-/- retinas were quantified using ultra performance liquid chromatography after light adaptation. Natural refractive development of Lrit3-/- mice was measured from three weeks to nine weeks of age using an infrared photorefractometer. Susceptibility to myopia induction was assessed using a lens-induced myopia protocol with -25 D lenses placed in front of the right eye of the animals for three weeks; the mean interocular shift was measured with an infrared photorefractometer after two and three weeks of goggling and after one and two weeks after removal of goggles. Results: Compared to wild-type littermates (Lrit3+/+), both DA and DOPAC were drastically reduced in Lrit3-/- retinas. Natural refractive development was normal but Lrit3-/- mice showed a higher myopic shift and a lower ability to recover from induced myopia. Conclusions: Our data consolidate the link between ON pathway defect altered dopaminergic signaling and myopia. We document for the first time the role of ON pathway on the recovery from myopia induction.


Asunto(s)
Ácido 3,4-Dihidroxifenilacético , Modelos Animales de Enfermedad , Dopamina , Ratones Noqueados , Miopía , Refracción Ocular , Animales , Ratones , Miopía/fisiopatología , Miopía/metabolismo , Miopía/genética , Dopamina/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Refracción Ocular/fisiología , Ratones Endogámicos C57BL , Retina/metabolismo , Retina/fisiopatología , Ceguera Nocturna/fisiopatología , Ceguera Nocturna/genética , Ceguera Nocturna/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Recuperación de la Función/fisiología , Masculino , Enfermedades Hereditarias del Ojo
16.
Am J Hum Genet ; 87(4): 523-31, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20850105

RESUMEN

Congenital stationary night blindness (CSNB) is a nonprogressive retinal disorder that can be associated with impaired night vision. The last decade has witnessed huge progress in ophthalmic genetics, including the identification of three genes implicated in the pathogenicity of autosomal-recessive CSNB. However, not all patients studied could be associated with mutations in these genes and thus other genes certainly underlie this disorder. Here, we report a large multigeneration family with five affected individuals manifesting symptoms of night blindness. A genome-wide scan localized the disease interval to chromosome 15q, and recombination events in affected individuals refined the critical interval to a 10.41 cM (6.53 Mb) region that harbors SLC24A1, a member of the solute carrier protein superfamily. Sequencing of all the coding exons identified a 2 bp deletion in exon 2: c.1613_1614del, which is predicted to result in a frame shift that leads to premature termination of SLC24A1 (p.F538CfsX23) and segregates with the disorder under an autosomal-recessive model. Expression analysis using mouse ocular tissues shows that Slc24a1 is expressed in the retina around postnatal day 7. In situ and immunohistological studies localized both SLC24A1 and Slc24a1 to the inner segment, outer and inner nuclear layers, and ganglion cells of the retina, respectively. Our data expand the genetic basis of CSNB and highlight the indispensible function of SLC24A1 in retinal function and/or maintenance in humans.


Asunto(s)
Cromosomas Humanos Par 15/genética , Ceguera Nocturna/genética , Intercambiador de Sodio-Calcio/genética , Animales , Secuencia de Bases , Genes Recesivos , Humanos , Inmunohistoquímica , Hibridación in Situ , Ratones , Datos de Secuencia Molecular , Retina/metabolismo , Análisis de Secuencia de ADN , Eliminación de Secuencia/genética , Intercambiador de Sodio-Calcio/metabolismo
17.
Prog Retin Eye Res ; 93: 101155, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669906

RESUMEN

Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.


Asunto(s)
Enfermedades Hereditarias del Ojo , Enfermedades Genéticas Ligadas al Cromosoma X , Miopía , Ceguera Nocturna , Animales , Ratones , Humanos , Ceguera Nocturna/genética , Estudio de Asociación del Genoma Completo , Electrorretinografía/métodos , Mutación , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Miopía/genética , Proteínas de la Membrana/genética
18.
Invest Ophthalmol Vis Sci ; 62(3): 24, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33729473

RESUMEN

Purpose: Complete congenital stationary night blindness (cCSNB) is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. GRM6 mutations are the third most prevalent cause of cCSNB. The Grm6-/- mouse model mimics the human phenotype, showing no b-wave in the electroretinogram (ERG) and a loss of mGluR6 and other proteins of the same cascade at the outer plexiform layer (OPL). Our aim was to restore protein localization and function in Grm6-/- adult mice targeting specifically ON-BCs or the whole retina. Methods: Adeno-associated virus-encoding Grm6 under two different promoters (GRM6-Grm6 and CAG-Grm6) were injected intravitreally in P15 Grm6-/- mice. ERG recordings at 2 and 4 months were performed in Grm6+/+, untreated and treated Grm6-/- mice. Similarly, immunolocalization studies were performed on retinal slices before or after treatment using antibodies against mGluR6, TRPM1, GPR179, RGS7, RGS11, Gß5, and dystrophin. Results: Following treatment, mGluR6 was localized to the dendritic tips of ON-BCs when expressed with either promoter. The relocalization efficiency in mGluR6-transduced retinas at the OPL was 2.5% versus 11% when the GRM6-Grm6 and CAG-Grm6 were used, respectively. Albeit no functional rescue was seen in ERGs, relocalization of TRPM1, GPR179, and Gß5 was also noted using both constructs. The restoration of the localization of RGS7, RGS11, and dystrophin was more obvious in retinas treated with GRM6-Grm6 than in retinas treated with CAG-Grm6. Conclusions: Our findings show the potential of treating cCSNB with GRM6 mutations; however, it appears that the transduction rate must be improved to restore visual function.


Asunto(s)
Dependovirus/genética , Modelos Animales de Enfermedad , Enfermedades Hereditarias del Ojo/metabolismo , Técnicas de Transferencia de Gen , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Miopía/metabolismo , Ceguera Nocturna/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Células Bipolares de la Retina/metabolismo , Animales , Electrorretinografía , Enfermedades Hereditarias del Ojo/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Vectores Genéticos , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Miopía/fisiopatología , Ceguera Nocturna/fisiopatología , Regiones Promotoras Genéticas , Receptores de Glutamato Metabotrópico/genética , Retina/fisiopatología , Transfección
19.
Mol Ther Methods Clin Dev ; 22: 15-25, 2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34401402

RESUMEN

Complete congenital stationary night blindness (cCSNB) due to mutations in TRPM1, GRM6, GPR179, NYX, or leucine-rich repeat immunoglobulin-like transmembrane domain 3 (LRIT3) is an incurable inherited retinal disorder characterized by an ON-bipolar cell (ON-BC) defect. Since the disease is non-degenerative and stable, treatment could theoretically be administrated at any time in life, making it a promising target for gene therapy. Until now, adeno-associated virus (AAV)-mediated therapies lead to significant functional improvements only in newborn cCSNB mice. Here we aimed to restore protein localization and function in adult Lrit3 -/ - mice. LRIT3 localizes in the outer plexiform layer and is crucial for TRPM1 localization at the dendritic tips of ON-BCs and the electroretinogram (ERG)-b-wave. AAV2-7m8-Lrit3 intravitreal injections were performed targeting either ON-BCs, photoreceptors (PRs), or both. Protein localization of LRIT3 and TRPM1 at the rod-to-rod BC synapse, functional rescue of scotopic responses, and ON-responses detection at the ganglion cell level were achieved in a few mice when ON-BCs alone or both PRs and ON-BCs, were targeted. More importantly, a significant number of treated adult Lrit3 -/- mice revealed an ERG b-wave recovery under scotopic conditions, improved optomotor responses, and on-time ON-responses at the ganglion cell level when PRs were targeted. Functional rescue was maintained for at least 4 months after treatment.

20.
PLoS One ; 15(4): e0231750, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32324760

RESUMEN

Melanoma-associated retinopathy (MAR) is a rare paraneoplastic retinal disorder usually occurring in the context of metastatic melanoma. Patients present with night blindness, photopsias and a constriction of the visual field. MAR is an auto-immune disorder characterized by the production of autoantibodies targeting retinal proteins, especially autoantibodies reacting to the cation channel TRPM1 produced in melanocytes and ON-bipolar cells. TRPM1 has at least three different isoforms which vary in the N-terminal region of the protein. In this study, we report the case of three new MAR patients presenting different anti-TRPM1 autoantibodies reacting to the three isoforms of TRPM1 with variable binding affinity. Two sera recognized all isoforms of TRPM1, while one recognized only the two longest isoforms upon immunolocalization studies on overexpressing cells. Similarly, the former two sera reacted with all TRPM1 isoforms on western blot, but an immunoprecipitation enrichment step was necessary to detect all isoforms with the latter serum. In contrast, all sera labelled ON-bipolar cells on Tprm1+/+ but not on Trpm1-/- mouse retina as shown by co-immunolocalization. This confirms that the MAR sera specifically detect TRPM1. Most likely, the anti-TRPM1 autoantibodies of different patients vary in affinity and concentration. In addition, the binding of autoantibodies to TRPM1 may be conformation-dependent, with epitopes being inaccessible in some constructs (truncated polypeptides versus full-length TRPM1) or applications (western blotting versus immunohistochemistry). Therefore, we propose that a combination of different methods should be used to test for the presence of anti-TRPM1 autoantibodies in the sera of MAR patients.


Asunto(s)
Autoanticuerpos/sangre , Melanoma/inmunología , Síndromes Paraneoplásicos Oculares/inmunología , Retina/inmunología , Enfermedades de la Retina/inmunología , Canales Catiónicos TRPM/inmunología , Anciano , Animales , Células COS , Chlorocebus aethiops , Femenino , Humanos , Masculino , Melanoma/patología , Persona de Mediana Edad , Retina/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA