Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Vet Res ; 15(1): 178, 2019 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-31142304

RESUMEN

BACKGROUND: Avian infectious bronchitis (IB) is a disease that can result in huge economic losses in the poultry industry. The high level of mutations of the IB virus (IBV) leads to the emergence of new serotypes and genotypes, and limits the efficacy of routine prevention. Medicinal plants, or substances derived from them, are being tested as options in the prevention of infectious diseases such as IB in many countries. The objective of this study was to investigate extracts of 15 selected medicinal plants for anti-IBV activity. RESULTS: Extracts of S. montana, O. vulgare, M. piperita, M. officinalis, T. vulgaris, H. officinalis, S. officinalis and D. canadense showed anti-IBV activity prior to and during infection, while S. montana showed activity prior to and after infection. M. piperita, O. vulgare and T. vulgaris extracts had > 60 SI. In further studies no virus plaques (plaque reduction rate 100%) or cytopathogenic effect (decrease of TCID50 from 2.0 to 5.0 log10) were detected after IBV treatment with extracts of M. piperita, D. canadense and T. vulgaris at concentrations of extracts ≥0.25 cytotoxic concentration (CC50) (P < 0.05). Both PFU number and TCID50 increased after the use of M. piperita, D. canadense, T. vulgaris and M. officinalis extracts, the concentrations of which were 0.125 CC50 and 0.25 CC50 (P < 0.05). Real-time PCR detected IBV RNA after treatment with all plant extracts using concentrations of 1:2 CC50, 1:4 CC50 and 1:8 CC50. Delta cycle threshold (Ct) values decreased significantly comparing Ct values of 1:2 CC50 and 1:8 CC50 dilutions (P < 0.05). CONCLUSIONS: Many extracts of plants acted against IBV prior to and during infection, but the most effective were those of M. piperita, T. vulgaris and D. canadense .


Asunto(s)
Antivirales/farmacología , Virus de la Bronquitis Infecciosa/efectos de los fármacos , Extractos Vegetales/farmacología , Plantas Medicinales , Animales , Antivirales/toxicidad , Chlorocebus aethiops , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/toxicidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Vero , Ensayo de Placa Viral
2.
Anal Bioanal Chem ; 408(4): 1043-53, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26660875

RESUMEN

The miniaturization and optimization of a white rot fungal bioremediation experiment is described in this paper. The optimized procedure allows determination of the degradation kinetics of anthracene. The miniaturized procedure requires only 2.5 ml of culture medium. The experiment is more precise, robust, and better controlled comparing it to classical tests in flasks. Using this technique, different parts, i.e., the culture medium, the fungi, and the cotton seal, can be analyzed. A simple sample preparation speeds up the analytical process. Experiments performed show degradation of anthracene up to approximately 60% by Irpex lacteus and up to approximately 40% by Pleurotus ostreatus in 25 days. Bioremediation of anthracene by the consortium of I. lacteus and P. ostreatus shows the biodegradation of anthracene up to approximately 56% in 23 days. At the end of the experiment, the surface tension of culture medium decreased comparing it to the blank, indicating generation of surfactant compounds.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Pleurotus/metabolismo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Antracenos/metabolismo , Basidiomycota/metabolismo , Medios de Cultivo/metabolismo , Contaminantes Ambientales/metabolismo , Hongos/metabolismo , Técnicas In Vitro , Límite de Detección , Naftalenos/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
Microorganisms ; 12(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930624

RESUMEN

Edible fungi are a valuable resource in the search for sustainable solutions to environmental pollution. Their ability to degrade organic pollutants, extract heavy metals, and restore ecological balance has a huge potential for bioremediation. They are also sustainable food resources. Edible fungi (basidiomycetes or fungi from other divisions) represent an underutilized resource in the field of bioremediation. By maximizing their unique capabilities, it is possible to develop innovative approaches for addressing environmental contamination. The aim of the present study was to find selective chemical agents suppressing the growth of microfungi and bacteria, but not suppressing white-rot fungi, in order to perform large-scale cultivation of white-rot fungi in natural unsterile substrates and use it for different purposes. One application could be the preparation of a matrix composed of wooden sleeper (contaminated with PAHs) and soil for further hazardous waste bioremediation using white-rot fungi. In vitro microbiological methods were applied, such as, firstly, compatibility tests between bacteria and white-rot fungi or microfungi, allowing us to evaluate the interaction between different organisms, and secondly, the addition of chemicals on the surface of a Petri dish with a test strain of microorganisms of white-rot fungi, allowing us to determine the impact of chemicals on the growth of organisms. This study shows that white-rot fungi are not compatible to grow with several rhizobacteria or bacteria isolated from soil and bioremediated waste. Therefore, the impact of several inorganic materials, such as lime (hydrated form), charcoal, dolomite powder, ash, gypsum, phosphogypsum, hydrogen peroxide, potassium permanganate, and sodium hydroxide, was evaluated on the growth of microfungi (sixteen strains), white-rot fungi (three strains), and bacteria (nine strains) in vitro. Charcoal, dolomite powder, gypsum, and phosphogypsum did not suppress the growth either of microfungi or of bacteria in the tested substrate, and even acted as promoters of their growth. The effects of the other agents tested were strain dependent. Potassium permanganate could be used for bacteria and Candida spp. growth suppression, but not for other microfungi. Lime showed promising results by suppressing the growth of microfungi and bacteria, but it also suppressed the growth of white-rot fungi. Hydrogen peroxide showed strong suppression of microfungi, and even had a bactericidal effect on some bacteria, but did not have an impact on white-rot fungi. The study highlights the practical utility of using hydrogen peroxide up to 3% as an effective biota-suppressing chemical agent prior to inoculating white-rot fungi in the large-scale bioremediation of polluted substrates, or in the large-scale cultivation for mushroom production as a foodstuff.

4.
Animals (Basel) ; 12(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35565519

RESUMEN

In this study, a 41-day experiment was conducted using 300 (21-day-old) Large White/Norwegian Landrace piglets (100 piglets in each group). Three dietary treatments were compared: (i) a basal diet (C-I), (ii) a basal diet with the addition of extruded-fermented wheat bran (Wex130/screwspeed25Lpa) (TG-II), and (iii) a basal diet with the addition of dried sugar beet pulp (TG-III). Analyses of piglets' blood parameters, faecal microbial and physico-chemical characteristics, and piglets' growth performance were performed. It was found that the extrusion and fermentation combination led to an additional functional value of Wex130/screwspeed25Lpa, which showed desirable antimicrobial and antifungal properties in vitro (inhibited 5 out of 10 tested pathogenic strains and 3 out of 11 tested fungi). Both treatments reduced total enterobacteria and increased lactic acid bacteria counts in piglets' faeces. The consistency of the piglets' faeces (in all three groups) was within a physiological range throughout the whole experiment. Strong positive correlations were found between the LAB count in piglets' faeces and butanoic acid; butanoic acid, 3-methyl-; butyric acid (2-methyl-); pentanoic acid. The treatment groups obtained a significantly higher body weight gain and average daily gain. Finally, substituting the piglets' diet with Wex130/screwspeed25Lpa and sugar beet pulp led to favourable changes in micro-organism populations in the piglets' faeces as well as better growth performance.

5.
Microorganisms ; 8(1)2019 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-31905993

RESUMEN

This research effort aimed at isolating and phenotypically characterizing lactic acid bacteria (LAB) isolates from a spontaneous rye sourdough manufactured following traditional protocols, as well as at evaluating their antimicrobial and antifungal properties as key features for future industrial applications. Thirteen LAB strains of potential industrial interest were isolated and identified to species-level via PCR. Most of the sourdough isolates showed versatile carbohydrate metabolisms. The Leuconostoc mesenteroides No. 242 and Lactobacillus brevis No. 173 demonstrated to be gas producers; thus, revealing their heterofermenter or facultative homofermenter features. Viable counts higher than 7.0 log10 (CFU/mL) were observed for Lactobacillus paracasei No. 244, Lactobacillus casei No. 210, L. brevis No. 173, Lactobacillus farraginis No. 206, Pediococcus pentosaceus No. 183, Lactobacillus uvarum No. 245 and Lactobacillus plantarum No. 135 strains, after exposure at pH 2.5 for 2 h. Moreover, L. plantarum No. 122, L. casei No. 210, Lactobacillus curvatus No. 51, L. paracasei No. 244, and L. coryniformins No. 71 showed growth inhibition properties against all the tested fifteen pathogenic strains. Finally, all LAB isolates showed antifungal activities against Aspergillus nidulans, Penicillium funiculosum, and Fusarium poae. These results unveiled the exceptionality of spontaneous sourdough as a source of LAB with effective potential to be considered in the design of novel commercial microbial single/mixed starter cultures, intended for application in a wide range of agri-food industries, where the antimicrobial and antifungal properties are often sought and necessary. In addition, metabolites therefrom may also be considered as important functional and bioactive compounds with high potential to be employed in food and feed, as well as cosmetic and pharmaceutical applications.

6.
Isotopes Environ Health Stud ; 53(3): 243-260, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27633837

RESUMEN

Stable isotope analysis was applied to describe the poultry house environment. The poultry house indoor environment was selected for this study due to the relevant health problems in animals and their caretakers. Air quality parameters including temperature, relative humidity, airflow rate, NH3, CO2 and total suspended particles, as well as mean levels of total airborne bacteria and fungi count, were measured. Carbon isotope ratios (13C/12C) were obtained in size-segregated aerosol particles. The carbon (13C/12C) and nitrogen (15N/14N) isotope ratios were measured in feed, litter, scrapings from the ventilation system, feathers and eggs. Additionally, the distribution of δ13C and δ15N values in different tissues of the chicken was examined. The airborne bacteria and fungi extracted from the air filters collected from poultry farms were grown in the laboratory in media with known isotope values and measured for stable isotope ratios. Analysis of isotope fractionation between microorganisms and their media indicated the applicability of stable isotope analysis in bulk samples for the identification of source material. The analysed examples imply that stable isotope analysis can be used to examine the indoor environment along with its biology and ecology, and serve as an informative bioanalytical tool.


Asunto(s)
Isótopos de Carbono/análisis , Monitoreo del Ambiente/métodos , Isótopos de Nitrógeno/análisis , Alimentación Animal/análisis , Animales , Pollos , Plumas/química , Femenino , Pisos y Cubiertas de Piso , Vivienda para Animales , Óvulo/química
7.
Ann Agric Environ Med ; 18(1): 139-44, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21739934

RESUMEN

The aim of the study was to evaluate the antimicrobial activity of essential oils in vitro for possible application to reduce the content of microorganisms in the air of animal houses. The essential oils of Cymbopogon citrarus L. and Malaleuca alternifolia L. were screened against bacteria Staphylococcus aureus, Enterococcus faecium, Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis and yeast Candida albicans. The minimal inhibitory concentration of the active essential oils was tested using broth dilution assay. The essential oils concentrations ranged from 0.1-50.0%. The combined effects of essential oils were tested for Malaleuca alternifolia L. and Cymbopogon citrarus L. concentrations ranged from 0.005-50.0%. The oils showed a wide spectrum of antibacterial activity. Concentrations of 0.1-0.5% of Cymbopogon citrarus L. and Malaleuca alternifolia L. reduced total microorganisms count of Proteus mirabilis and Candida albicans. High antibacterial activity was also revealed for Cymbopogon citrarus L. with bactericidal concentrations of 0.8% for Escherichia coli, 5.0% for Enterococcus faecium, 5.0% for Pseudomonas aeruginosa and 8.0% for Staphylococcus aureus. Bactericidal concentrations of Malaleuca alternifolia L. were 5.0% for Pseudomonas aeruginosa and Enterococcus faecium, and 8.0% for Staphylococcus aureus. The essential oils of Cymbopogon citrarus and Malaleuca alternifolia may be a promising alternative of air disinfection in animal houses.


Asunto(s)
Antiinfecciosos Locales/farmacología , Bacterias/efectos de los fármacos , Candida albicans/efectos de los fármacos , Cymbopogon/química , Aceite de Árbol de Té/farmacología , Antiinfecciosos Locales/química , Antifúngicos/farmacología , Melaleuca/química , Pruebas de Sensibilidad Microbiana , Aceite de Árbol de Té/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA