Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Theor Appl Genet ; 133(4): 1243-1264, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31965232

RESUMEN

KEY MESSAGE: Diagnostic markers for Rrs1Rh4 have been identified by testing for associations between SNPs within the Rrs1 interval in 150 barley genotypes and their resistance to Rhynchosporium commune isolates recognised by lines containing Rrs1. Rhynchosporium or barley scald, caused by the destructive fungal pathogen Rhynchosporium commune, is one of the most economically important diseases of barley in the world. Barley landraces from Syria and Jordan demonstrated high resistance to rhynchosporium in the field. Genotyping of a wide range of barley cultivars and landraces, including known sources of different Rrs1 genes/alleles, across the Rrs1 interval, followed by association analysis of this genotypic data with resistance phenotypes to R. commune isolates recognised by Rrs1, allowed the identification of diagnostic markers for Rrs1Rh4. These markers are specific to Rrs1Rh4 and do not detect other Rrs1 genes/alleles. The Rrs1Rh4 diagnostic markers represent a resource that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars. Thirteen out of the 55 most resistant Syrian and Jordanian landraces were shown to contain markers specific to Rrs1Rh4. One of these lines came from Jordan, with the remaining 12 lines from different locations in Syria. One of the Syrian landraces containing Rrs1Rh4 was also shown to have Rrs2. The remaining landraces that performed well against rhynchosporium in the field are likely to contain other resistance genes and represent an important novel resource yet to be exploited by European breeders.


Asunto(s)
Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Sitios Genéticos , Hordeum/genética , Hordeum/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Alelos , Segregación Cromosómica/genética , Ecotipo , Exoma/genética , Genes de Plantas , Marcadores Genéticos , Genotipo , Geografía , Proteínas Fluorescentes Verdes/metabolismo , Jordania , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Siria
2.
Theor Appl Genet ; 131(12): 2513-2528, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30151748

RESUMEN

KEY MESSAGE: Association analyses of resistance to Rhynchosporium commune in a collection of European spring barley germplasm detected 17 significant resistance quantitative trait loci. The most significant association was confirmed as Rrs1. Rhynchosporium commune is a fungal pathogen of barley which causes a highly destructive and economically important disease known as rhynchosporium. Genome-wide association mapping was used to investigate the genetic control of host resistance to R. commune in a collection of predominantly European spring barley accessions. Multi-year disease nursery field trials revealed 8 significant resistance quantitative trait loci (QTL), whilst a separate association mapping analysis using historical data from UK national and recommended list trials identified 9 significant associations. The most significant association identified in both current and historical data sources, collocated with the known position of the major resistance gene Rrs1. Seedling assays with R. commune single-spore isolates expressing the corresponding avirulence protein NIP1 confirmed that this locus is Rrs1. These results highlight the significant and continuing contribution of Rrs1 to host resistance in current elite spring barley germplasm. Varietal height was shown to be negatively correlated with disease severity, and a resistance QTL was identified that co-localised with the semi-dwarfing gene sdw1, previously shown to contribute to disease escape. The remaining QTL represent novel resistances that are present within European spring barley accessions. Associated markers to Rrs1 and other resistance loci, identified in this study, represent a set of tools that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars.


Asunto(s)
Ascomicetos/patogenicidad , Resistencia a la Enfermedad/genética , Hordeum/genética , Enfermedades de las Plantas/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Estudios de Asociación Genética , Marcadores Genéticos , Genotipo , Hordeum/microbiología , Fenotipo , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple
3.
J Plant Physiol ; 165(1): 71-82, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17905476

RESUMEN

Stable genetic transformation represents the gold standard approach to the detailed elucidation of plant gene functions. This is particularly relevant in barley, an important experimental model widely employed in applied molecular, genetic and cell biological research, and biotechnology. Presented are details of the establishment of a protocol for Agrobacterium-mediated gene transfer to immature embryos, which enables the highly efficient generation of transgenic barley. Advancements were achieved through comparative experiments on the influence of various explant treatments and co-cultivation conditions. The analysis of representative numbers of transgenic lines revealed that the obtained T-DNA copy numbers are typically low, the generative transmission of the recombinant DNA is in accordance with the Mendelian rules and the vast majority of the primary transgenics produce progeny that expresses the respective transgene product. Moreover, the newly established protocol turned out to be useful to transform not only the highly amenable cultivar (cv.) 'Golden Promise' but also other spring and winter barley genotypes, albeit with substantially lower efficiency. As a major result of this study, a very useful tool is now available for future functional gene analyses as well as genetic engineering approaches. With the aim to modify the expression of barley genes putatively involved in plant-fungus interactions, numerous transgenic plants have been generated using diverse expression cassettes. These plants represent an example of how transformation technology may contribute to further our understanding of important biological processes.


Asunto(s)
Técnicas de Transferencia de Gen , Hordeum/genética , Hordeum/microbiología , Agrobacterium tumefaciens/clasificación , Técnicas de Cocultivo/métodos , Medios de Cultivo , Regulación de la Expresión Génica de las Plantas , Genes Reporteros/genética , Vectores Genéticos , Genotipo , Hordeum/embriología , Interacciones Huésped-Patógeno , Plantas Modificadas Genéticamente , Transformación Genética
4.
Biotechnol Lett ; 30(5): 945-9, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18066499

RESUMEN

Bombardment of intact anthers of commercial barley (Hordeum vulgare) varieties resulted in 0.5-1.0% of transformed microspores of which 20-40% continued in androgenic development (0.2% of all bombarded microspores). Using a system based on bombardment of anthers is therefore likely to be more technically efficient than the use of a microspore isolation, transformation and regeneration system. Bombardment of anthers has a number of technical and scientific advantages over existing systems for gene transfer and can be considered as a alternative method to existing methods for genetic transformation in barley.


Asunto(s)
Biolística/métodos , Flores/genética , Hordeum/genética , Plantas Modificadas Genéticamente/genética , Supervivencia Celular , Células Cultivadas , Frío , Genes Reporteros , Manitol/química , Plásmidos , Presión , Transformación Genética
5.
Sci Rep ; 5: 15229, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26477733

RESUMEN

Phytohormones are involved in diverse aspects of plant life including the regulation of plant growth, development and reproduction, as well as governing biotic and abiotic stress responses. We have generated a comprehensive transcriptional reference map of the early potato responses to exogenous application of the defence hormones abscisic acid, brassinolides (applied as epibrassinolide), ethylene (applied as the ethylene precursor aminocyclopropanecarboxylic acid), salicylic acid and jasmonic acid (applied as methyl jasmonate). Of the 39000 predicted genes on the microarray, a total of 2677 and 2473 genes were significantly differentially expressed at 1 h and 6 h after hormone treatment, respectively. Specific marker genes newly identified for the early hormone responses in potato include: a homeodomain 20 transcription factor (DMG400000248) for abscisic acid; a SAUR gene (DMG400016561) induced in epibrassinolide treated plants; an osmotin gene (DMG400003057) specifically enhanced by aminocyclopropanecarboxylic acid; a gene weakly similar to AtWRKY40 (DMG402007388) that was induced by salicylic acid; and a jasmonate ZIM-domain protein 1 (DMG400002930) which was specifically activated by methyl jasmonate. An online database has been set up to query the expression patterns of potato genes represented on the microarray that can also incorporate future microarray or RNAseq-based expression studies.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Solanum tuberosum/efectos de los fármacos , Solanum tuberosum/genética , Transcriptoma , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA