Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nature ; 603(7900): 271-275, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038718

RESUMEN

In oxidation reactions catalysed by supported metal nanoparticles with oxygen as the terminal oxidant, the rate of the oxygen reduction can be a limiting factor. This is exemplified by the oxidative dehydrogenation of alcohols, an important class of reactions with modern commercial applications1-3. Supported gold nanoparticles are highly active for the dehydrogenation of the alcohol to an aldehyde4 but are less effective for oxygen reduction5,6. By contrast, supported palladium nanoparticles offer high efficacy for oxygen reduction5,6. This imbalance can be overcome by alloying gold with palladium, which gives enhanced activity to both reactions7,8,9; however, the electrochemical potential of the alloy is a compromise between that of the two metals, meaning that although the oxygen reduction can be improved in the alloy, the dehydrogenation activity is often limited. Here we show that by separating the gold and palladium components in bimetallic carbon-supported catalysts, we can almost double the reaction rate compared with that achieved with the corresponding alloy catalyst. We demonstrate this using physical mixtures of carbon-supported monometallic gold and palladium catalysts and a bimetallic catalyst comprising separated gold and palladium regions. Furthermore, we demonstrate electrochemically that this enhancement is attributable to the coupling of separate redox processes occurring at isolated gold and palladium sites. The discovery of this catalytic effect-a cooperative redox enhancement-offers an approach to the design of multicomponent heterogeneous catalysts.


Asunto(s)
Oro , Nanopartículas del Metal , Alcoholes , Aleaciones , Carbono , Catálisis , Oxidación-Reducción , Oxígeno , Paladio
2.
Chemistry ; 24(10): 2396-2402, 2018 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-29266447

RESUMEN

Mg(OH)2 - and Mg(OH)2 -containing materials can provide excellent performance as supports for AuPd nanoparticles for the oxidation of glycerol in the absence of base, which is considered to be a result of additional basic sites on the surface of the support. However, its influence on the reaction solution is not generally discussed. In this paper, we examine the relationship between the basic Mg(OH)2 support and AuPd nanoparticles in detail using four types of catalyst. For these reactions, the physical interaction between Mg(OH)2 and AuPd was adjusted. It was found that the activity of the AuPd nanoparticles increased with the amount of Mg(OH)2 added under base-free conditions, regardless of its interaction with the noble metals. In order to investigate how Mg(OH)2 affected the glycerol oxidation, detailed information about the performance of AuPd/Mg(OH)2 , physically mixed (AuPd/C+Mg(OH)2 ) and (AuPd/C+NaHCO3 ) was obtained and compared. Furthermore, NaOH and Mg(OH)2 were added during the reaction using AuPd/C. All these results indicate that the distinctive and outstanding performance of Mg(OH)2 supported catalysts in base-free condition is in fact directly related to its ability to affect the pH during the reaction and as such, assists with the initial activation of the primary alcohol, which is considered to be the rate determining step in the reaction.

3.
Faraday Discuss ; 208(0): 409-425, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-29796569

RESUMEN

A series of 1 wt% supported Au, Pd and AuPd nanoalloy catalysts were prepared via microwave assisted reduction of PdCl2 and HAuCl4 in a facile, one pot process. The resulting materials showed excellent activity for the direct synthesis of hydrogen peroxide from hydrogen and oxygen, with a synergistic effect observed on the addition of Au into a Pd catalyst. Detailed electron microscopy showed that the bimetallic particles exhibited a core-shell morphology, with an Au core surrounded by an Au-Pd shell, with a size between 10-20 nm. The presence of Au in the shell was confirmed by EDX studies, with corroborating data from XPS measurements showing a significant contribution of both Au and Pd in the spectra, with the Au signal increasing as the total Au content of the catalyst increased. No PdO was observed, suggesting a complete reduction of the metal chloride nanoparticles. Unlike similar catalysts prepared by sol-immobilisation methodology, the core-shell structures showed excellent stability during the hydrogen peroxide synthesis reaction, and no catalyst deactivation was observed over 4 reuse cycles. This is the first time the preparation of stable core-shell particles have been reported using microwave assisted reduction. The observation that these particles are core-shell, without the need of a complicated synthesis or high thermal treatment and form in just 15 minutes presents an exciting opportunity for this experimental technique.

4.
Faraday Discuss ; 188: 427-50, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27074316

RESUMEN

Gold and gold alloys, in the form of supported nanoparticles, have been shown over the last three decades to be highly effective oxidation catalysts. Mixed metal oxide perovskites, with their high structural tolerance, are ideal for investigating how changes in the chemical composition of supports affect the catalysts' properties, while retaining similar surface areas, morphologies and metal co-ordinations. However, a significant disadvantage of using perovskites as supports is their high crystallinity and small surface area. We report the use of a supercritical carbon dioxide anti-solvent precipitation methodology to prepare large surface area lanthanum based perovskites, making the deposition of 1 wt% AuPt nanoparticles feasible. These catalysts were used for the selective oxidation of glycerol. By changing the elemental composition of the perovskite B site, we dramatically altered the reaction pathway between a sequential oxidation route to glyceric or tartronic acid and a dehydration reaction pathway to lactic acid. Selectivity profiles were correlated to reported oxygen adsorption capacities of the perovskite supports and also to changes in the AuPt nanoparticle morphologies. Extended time on line analysis using the best oxidation catalyst (AuPt/LaMnO3) produced an exceptionally high tartronic acid yield. LaMnO3 produced from alternative preparation methods was found to have lower activities, but gave comparable selectivity profiles to that produced using the supercritical carbon dioxide anti-solvent precipitation methodology.

5.
Phys Chem Chem Phys ; 18(26): 17259-64, 2016 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-27079275

RESUMEN

A series of ruthenium catalysts supported on two different carbons were tested for the hydrogenation of lactic acid to 1,2-propanediol and butanone to 2-butanol. The properties of the carbon supports were investigated by inelastic neutron scattering and correlated with the properties of the ruthenium deposited onto the carbons by wet impregnation or sol-immobilisation. It was noted that the rate of butanone hydrogenation was highly dependent on the carbon support, while no noticeable difference in rates was observed between different catalysts for the hydrogenation of lactic acid.

6.
Chemistry ; 19(35): 11725-32, 2013 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-23873412

RESUMEN

In recent work, it was reported that changes in solvent composition, precisely the addition of water, significantly inhibits the catalytic activity of Au/TiO2 catalyst in the aerobic oxidation of 1,4-butanediol in methanol due to changes in diffusion and adsorption properties of the reactant. In order to understand whether the inhibition mechanism of water on diol oxidation in methanol is generally valid, the solvent effect on the aerobic catalytic oxidation of 1,3-propanediol and its two methyl-substituted homologues, 2-methyl-1,3-propanediol and 2,2-dimethyl-1,3-propanediol, over a Au/TiO2 catalyst has been studied here using conventional catalytic reaction monitoring in combination with pulsed-field gradient nuclear magnetic resonance (PFG-NMR) diffusion and NMR relaxation time measurements. Diol conversion is significantly lower when water is present in the initial diol/methanol mixture. A reactivity trend within the group of diols was also observed. Combined NMR diffusion and relaxation time measurements suggest that molecular diffusion and, in particular, the relative strength of diol adsorption, are important factors in determining the conversion. These results highlight NMR diffusion and relaxation techniques as novel, non-invasive characterisation tools for catalytic materials, which complement conventional reaction data.

7.
Chem Soc Rev ; 41(24): 8099-139, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23093051

RESUMEN

This Critical Review provides an overview of the recent developments in the synthesis and characterization of bimetallic nanoparticles. Initially the review follows a materials science perspective on preparing bimetallic nanoparticles with designer morphologies, after which the emphasis shifts towards recent developments in using these bimetallic particles for catalysing either oxidation or reduction. In the final part of this review we present an overview of the utilization of bimetallic catalyst systems for the transformation of bio-renewable substrates and reactions related to the realization of a bio-refinery. Because of the sheer number of examples of transformations in this area, a few key examples, namely selective oxidation, hydrogenation/hydrogenolysis and reforming of biomass derived molecules, have been chosen for this review. Reports of bimetallic catalysts being used for the aforementioned transformations are critically analysed and the potential for exploiting such bimetallic catalysts have also been highlighted. A specific objective of this review article is to motivate researchers to synthesize some of the "designer" bimetallic catalysts with specific nanostructures, inspired from recent advances in the area of materials chemistry, and to utilize them for the transformation of biomass derived materials that are very complex and pose different challenges compared to those of simple organic molecules. We consider that supported bimetallic nanoparticles have an important role to play as catalysts in our quest for a more green and sustainable society.

8.
Chemistry ; 18(45): 14426-33, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23008214

RESUMEN

The effect of water on the catalytic oxidation of 1,4-butanediol in methanol over Au/TiO(2) has been investigated by catalytic reaction studies and NMR diffusion and relaxation studies. The addition of water to the dry catalytic system led to a decrease of both conversion and selectivity towards dimethyl succinate. Pulsed-field gradient (PFG)-NMR spectroscopy was used to assess the effect of water addition on the effective self-diffusivity of the reactant within the catalyst. NMR relaxation studies were also carried out to probe the strength of surface interaction of the reactant in the absence and presence of water. PFG-NMR studies revealed that the addition of water to the initial system, although increasing the dilution of the system, leads to a significant decrease of effective diffusion rate of the reactant within the catalyst. From T(1) and T(2) relaxation measurements it was possible to infer the strength of surface interaction of the reactant with the catalyst surface. The addition of water was found to inhibit the adsorption of the reactant over the catalyst surface, with the T(1)/T(2) ratio of 1,4-butanediol decreasing significantly when water was added. The results overall suggest that both the decrease of diffusion rate and adsorption strength of the reactant within the catalyst, due to water addition, limits the access of reactant molecules to the catalytic sites, which results in a decrease of reaction rate and conversion.

10.
Top Catal ; 61(5): 509-518, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-31258305

RESUMEN

Cyclic carbonates are valuable chemicals for the chemical industry and thus, their efficient synthesis is essential. Commonly, cyclic carbonates are synthesised in a two-step process involving the epoxidation of an alkene and a subsequent carboxylation to the cyclic carbonate. To couple both steps into a direct oxidative carboxylation reaction would be desired from an economical view point since additional work-up procedures can be avoided. Furthermore, the efficient sequestration of CO2, a major greenhouse gas, would also be highly desirable. In this work, the oxidative carboxylation of 1-decene is investigated using supported gold catalysts for the epoxidation step and tetrabutylammonium bromide in combination with zinc bromide for the cycloaddition of carbon dioxide in the second step. The compatibility of the catalysts for both steps is explored and a detailed study of catalyst deactivation using X-ray photoelectron spectroscopy and scanning electron microscopy is reported. Promising selectivity of the 1,2-decylene carbonate is observed using a one-pot two-step approach.

12.
ChemSusChem ; 8(19): 3314-22, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26337897

RESUMEN

Precious metal nanoparticles supported on magnesium-aluminum hydrotalcite (HT), TiO2 , and MgO were prepared by sol immobilization and assessed for the catalytic oxidation of octanol, which is a relatively unreactive aliphatic alcohol, with molecular oxygen as the oxidant under solvent- and base-free conditions. Compared with the TiO2 - and MgO-supported catalysts, platinum HT gave the highest activity and selectivity towards the aldehyde. The turnover number achieved for the platinum HT catalyst was >3700 after 180 min under mild reaction conditions. Moreover, the results for the oxidation of different substrates indicate that a specific interaction of octanal with the platinum HT catalyst could lead to deactivation of the catalyst.


Asunto(s)
Alcoholes/química , Hidróxido de Aluminio/química , Hidróxido de Magnesio/química , Metales Pesados/química , Catálisis , Óxido de Magnesio/química , Nanopartículas del Metal/química , Octanoles/química , Oxidantes/química , Oxidación-Reducción , Oxígeno/química , Presión , Temperatura , Titanio/química
13.
ChemSusChem ; 8(3): 473-80, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25522346

RESUMEN

The base-free selective catalytic oxidation of n-butanol by O2 in an aqueous phase has been studied using Au-Pd bimetallic nanoparticles supported on titania. Au-Pd/TiO2 catalysts were prepared by different methods: wet impregnation, physical mixing, deposition-precipitation and sol immobilisation. The sol immobilisation technique, which used polyvinyl alcohol (PVA) as the stabilizing agent, gave the catalyst with the smallest average particle size and the highest stable activity and selectivity towards butyric acid. Increasing the amount of PVA resulted in a decrease in the size of the nanoparticles. However, it also reduced activity by limiting the accessibility of reactants to the active sites. Heating the catalyst to reflux with water at 90 °C for 1 h was the best method to enhance the surface exposure of the nanoparticles without affecting their size, as determined by TEM, X-ray photoelectron spectroscopy and CO chemisorption analysis. This catalyst was not only active and selective towards butyric acid but was also stable under the operating conditions.


Asunto(s)
1-Butanol/química , Oro/química , Nanopartículas del Metal/química , Paladio/química , Oxidación-Reducción , Oxígeno/química , Tamaño de la Partícula , Titanio/química
14.
ChemSusChem ; 7(5): 1326-34, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24955446

RESUMEN

Base-free selective oxidation of glycerol has been investigated using trimetallic Au­Pd­Pt nanoparticles supported on titania and their corresponding bimetallic catalysts. Catalysts were prepared by the sol-immobilization method and characterized by means of TEM, UV/Vis spectroscopy, diffuse reflectance infrared fourier transform spectroscopy, X-ray photoelectron spectroscopy, and microwave plasma­atomic emission spectroscopy. It was found that of the bimetallic catalysts, Pd­Pt/TiO2 was the most active with high selectivity to C3 products. The addition of Au to this catalyst to form the trimetallic Au­Pd­Pt/TiO2, resulted in an increase in activity relative to Pd­Pt/TiO2. The turnover frequency increased from 210 h(−1) with the Pd­Pt/TiO2 catalyst to378 h(−1) for the trimetallic Au­Pd­Pt/TiO2 catalyst with retention of selectivity towards C3 products.


Asunto(s)
Glicerol/química , Oro/química , Nanopartículas/química , Paladio/química , Platino (Metal)/química , Titanio/química , Biocombustibles , Catálisis , Técnicas Electroquímicas , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Espectrofotometría Atómica , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
15.
ChemSusChem ; 6(10): 1952-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24106232

RESUMEN

The oxidation of 1,4-butanediol and butyrolactone have been investigated by using supported gold, palladium and gold-palladium nanoparticles. The products of such reactions are valuable chemical intermediates and, for example, can present a viable pathway for the sustainable production of polymers. If both gold and palladium were present, a significant synergistic effect on the selective formation of dimethyl succinate was observed. The support played a significant role in the reaction, with magnesium hydroxide leading to the highest yield of dimethyl succinate. Based on structural characterisation of the fresh and used catalysts, it was determined that small gold-palladium nanoalloys supported on a basic Mg(OH)2 support provided the best catalysts for this reaction.


Asunto(s)
Butileno Glicoles/química , Oro/química , Nanopartículas del Metal/química , Succinatos/química , Catálisis , Esterificación , Oxidación-Reducción
16.
Dalton Trans ; 42(40): 14498-508, 2013 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-23970000

RESUMEN

Au-Pd nanoalloys supported on Mg-Al mixed metal oxides prepared using sol-immobilisation are found to be highly efficient and reusable catalysts for the solvent-free oxidation of benzyl alcohol using molecular oxygen under low pressure. When using this support alloying Pd with Au resulted in an increase in both activity and selectivity to benzaldehyde and moreover an improved resistance to catalyst deactivation compared with the monometallic Pd and Au catalysts. The turnover number for the Au/Pd 1:1 molar ratio catalyst achieved 13,000 after 240 min and the selectivity to benzaldehyde was maintained at 93%; this high catalytic activity can be retained in full after three successive uses. The ensemble and electronic effect of Au-Pd nanoalloys were studied by IR spectroscopy using CO chemisorption, XPS and HRTEM. Moreover, the bifunctional nature of the acid-base MgAl-MMO support was found to be important as the acid sites are considered to be responsible for the improvement of catalytic activity; while, the basic sites gave rise to high selectivity. A possible mechanism with Au-Pd nanoparticles as the active sites has been proposed, illustrating that the oxidation of benzyl alcohol can proceed through the cooperation between the Au-Pd nanoalloys and the base/acid sites on the surface of the support.

17.
Faraday Discuss ; 162: 365-78, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24015595

RESUMEN

Trimetallic Au-Pd-Pt nanoparticles have been supported on activated carbon by the sol-immobilisation method. They are found to be highly active and selective catalysts for the solvent-free aerobic oxidation of benzyl alcohol. The addition of Pt promotes the selectivity to the desired product benzaldehyde at the expense of toluene formation. Detailed aberration corrected STEM-XEDS analysis confirmed that the supported particles are indeed Au-Pd-Pt ternary alloys, but also identified composition fluctuations from particle-to-particle which vary systematically with nanoparticle size.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA