Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446332

RESUMEN

Biochar-amended soils influence the degradation of herbicides depending on the pyrolysis temperature, application rate, and feedstock used. The objective of this study was to evaluate the influence of sugarcane straw biochar (BC) produced at different pyrolysis temperatures (350 °C, 550 °C, and 750 °C) and application rates in soil (0, 0.1, 0.5, 1, 1.5, 5, and 10% w/w) on metribuzin degradation and soil microbiota. Detection analysis of metribuzin in the soil to find time for 50% and 90% metribuzin degradation (DT50 and DT90) was performed using high-performance liquid chromatography (HPLC). Soil microbiota was analyzed by respiration rate (C-CO2), microbial biomass carbon (MBC), and metabolic quotient (qCO2). BC350 °C-amended soil at 10% increased the DT50 of metribuzin from 7.35 days to 17.32 days compared to the unamended soil. Lower application rates (0.1% to 1.5%) of BC550 °C and BC750 °C decreased the DT50 of metribuzin to ~4.05 and ~5.41 days, respectively. BC350 °C-amended soil at high application rates (5% and 10%) provided high C-CO2, low MBC fixation, and high qCO2. The addition of low application rates (0.1% to 1.5%) of sugarcane straw biochar produced at high temperatures (BC550 °C and BC750 °C) resulted in increased metribuzin degradation and may influence the residual effect of the herbicide and weed control efficiency.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Temperatura , Dióxido de Carbono/análisis , Suelo/química , Pirólisis , Contaminantes del Suelo/metabolismo , Herbicidas/química , Carbón Orgánico/química
2.
Int J Phytoremediation ; 23(5): 474-481, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33000969

RESUMEN

Quinclorac and tebuthiuron are residual herbicides that may remain in the soil longer than for the cropping season. The objective of this research was to evaluate the use of green manure plants to remediate soils treated with quinclorac and tebuthiuron. Soils were separately treated with 14C-quinclorac and 14C-tebuthiuron at 266.4 and 132 g ha-1, respectively. After 21 days, four green manure plants, namely Crotalaria spectabilis, Canavalia ensiformis, Stizolobium aterrimum, and Lupinus albus, were separately sown in the treated soils. Overall, all four species absorbed more 14C-tebuthiuron [C. ensiformes (22.49%), S. aterrimum (16.71%), L. albus (15%), and C. spectabilis (4.48%)] than 14C-quinclorac [C. ensiformis (13.44%), L. albus (10.02%), S. aterrimum (6.2%), and C. spectabilis (1.75%)]. Quinclorac translocation in all four plants was greater in young leaves compared to old leaves, cotyledons, or roots, and 14C-tebuthiuron translocation in all four plant species was greater in old leaves and cotyledons compared to young leaves or roots. Regardless of the differences in translocation between the two herbicides, the four green manure plants are capable to remediate soils that have been treated with quinclorac and tebuthiuron. However, C. ensiformis is more efficient for the remediation of tebuthiuron-treated soil compared to the other plants.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Biodegradación Ambiental , Estiércol , Compuestos de Metilurea , Quinolinas , Suelo , Contaminantes del Suelo/análisis
3.
J Environ Sci Health B ; 56(6): 532-539, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33950786

RESUMEN

The addition of carbonaceous material such as cow bonechar to the soil can affect the availability of applied pre-emergent herbicides such as indaziflam. However, how cow bonechar affects the bioavailability of indaziflam is not yet known. The aim of this study was to evaluate the effect of cow bonechar on herbicidal activity of indaziflam on weeds in a tropical soil. Cow bonechar was added homogeneously to top soil, at 1, 2, 5, 10, and 20 t ha-1, in addition to treatment with unamended soil. At 21 days after indaziflam (75 g ha-1) application, injury weed levels, weed species that emerged spontaneously were identified and the weeds present in each sampling unit were collected. Only 1.4 t ha-1 cow bonechar added to soil was enough to reduce the weed injury level by 50%. From the addition of 2 t ha-1 cow bonechar the application of indaziflam was not efficient to weed control, being equivalent to treatments without herbicide application. Eight weed species (3 monocots and 5 dicots) were identified in all treatments. Eleusine indica and Digitaria horizontalis accounted for about 99.7% of the entire infestation of the weed community. Cow bonechar decreases indaziflam pre-emergence herbicidal activity in tropical soil for weed control, most likely due to the high sorption and unavailability of the product in the soil solution.


Asunto(s)
Huesos , Herbicidas/química , Herbicidas/farmacología , Indenos/química , Indenos/farmacología , Malezas/efectos de los fármacos , Triazinas/química , Triazinas/farmacología , Animales , Bovinos , Suelo , Clima Tropical , Control de Malezas
4.
J Environ Sci Health B ; 56(8): 731-740, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34190026

RESUMEN

This study aimed to characterize the effect of amending soils with biochars derived from soybean residues, sugarcane bagasse, and wood chips on the sorption-desorption of indaziflam and indaziflam-triazinediamine (FDAT), indaziflam-triazine-indanone (ITI), and indaziflam-carboxylic acid (ICA) metabolites applied to soils from three Midwestern U.S. states, a silt loam and a silty clay loam. Biochars produced from different feedstock were used as soil amendments and compared with raw feedstock. Sorption-desorption experiments of indaziflam and its three metabolites were performed using the batch equilibration method and analyzed for 14C activity by liquid scintillation counting (radiometric technique). In all soils, the use of organic amendments promoted greater sorption and less desorption of indaziflam and ITI. The addition of biochar to soils promoted greater sorption of the four tested chemical products compared with the corresponding raw materials. Among the biochars, grape wood chips showed greater potential in sorb indaziflam and ITI. In general, none of the biochars affected the sorption and desorption of FDAT and ICA. Characterization of biochar to be used as a soil amendment (immobilizer) is highly recommended prior to field addition to optimize the sorption process and to prevent increased soil and water contamination of indaziflam and its metabolites following biochar addition.


Asunto(s)
Herbicidas , Contaminantes del Suelo , Adsorción , Carbón Orgánico , Herbicidas/análisis , Indenos , Suelo , Contaminantes del Suelo/análisis , Triazinas
5.
J Environ Sci Health B ; 56(7): 644-649, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34096452

RESUMEN

Saflufenacil is an herbicide that is leachable in soil and has the potential to contaminate groundwater, besides having moderate toxicity to aquatic organisms. Some macrophyte species may interfere with the availability of herbicides in water, increasing dissipation in this environment. Thus, the objective of this work was to evaluate the absorption and dissipation of 14C-saflufenacil in water by Egeria densa and Pistia stratiotes. Dissipation was performed with 14C-saflufenacil applied directly in water and quantified by liquid scintillation spectrometry (LSS). The evaluation times were 0, 3, 6, 24, 48, 72 and 96 h after application (HAA) for E. densa and 0, 12, 24, 36, 48, 60, 84 and 108 HAA for P. stratiotes. Absorption was analyzed through plant combustion in a biological oxidizer. The presence of the macrophytes increased the dissipation of 14C-saflufenacil in water. The half-life time (DT50) of the herbicide decreased by 82.6% in the presence of E. densa at 96 HAA. For P. stratiotes, the reduction in DT50 was 94.8% at 108 HAA. The absorption of 14C-saflufenacil was low for both macrophytes during the evaluated time. However, the macrophytes E. densa and P. stratiotes showed potential for the phytoremediation of water contaminated with saflufenacil.


Asunto(s)
Araceae , Contaminantes Químicos del Agua , Biodegradación Ambiental , Pirimidinonas , Sulfonamidas , Agua , Contaminantes Químicos del Agua/análisis
6.
J Environ Sci Health B ; 56(1): 10-15, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33043792

RESUMEN

The application of glyphosate to coffee crops can cause injuries to plants. Fertiactyl® foliar fertilizer reduces injuries when mixed with glyphosate; however, it is important to establish which mechanisms are responsible for this protective action. This study aimed to evaluate the absorption and translocation of glyphosate applied separately and in mixture with Fertiactyl® in coffee seedlings. Absorption and translocation were performed with 14C-glyphosate applied separately and in mixture with Fertiactyl® at 0, 6, 12, 24, 48, 96, and 144 hours after application (HAA). Most of the 14C-glyphosate applied to coffee seedlings was not absorbed. The 14C-glyphosate applied separately had a higher absorption by coffee seedlings (6.5%) than in a mixture with Fertiactyl® (2.7%) at 144 HAA. The maximum translocation of the 14C-glyphosate applied separately was 0.69% at 81.2 HAA and in mixture with Fertiactyl® was 0.41% at 41.2 HAA. The treated leaves retained a higher percentage of 14C-glyphosate when applied separately (5.6% at 144 HAA) than in a mixture with Fertiactyl® (2.2% at 144 HAA). Low translocation (<1%) for the rest of the plant shoots was observed both for the 14C-glyphosate applied separately and in combination with Fertiactyl®. Therefore, Fertiactyl® decreased the absorption and translocation of 14C-glyphosate in coffee seedlings.


Asunto(s)
Coffea/metabolismo , Fertilizantes , Glicina/análogos & derivados , Herbicidas/farmacocinética , Absorción Fisiológica , Transporte Biológico , Glicina/farmacocinética , Hojas de la Planta/metabolismo , Plantones/metabolismo , Glifosato
7.
Heliyon ; 9(7): e17817, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37455978

RESUMEN

Biodegradation studies of herbicides applied to the soil alone and in a mixture are required since herbicides are often used in combinations to control weeds. When herbicides are applied in mixtures, interactions may affect their environmental fate. Thus, the objective of this study was to evaluate the distribution of extractable residue, bound residue, biodegradation, and mineralization of diuron, hexazinone, and sulfometuron-methyl when applied alone and in a mixture in two agricultural soils. Biometric flasks filled with two types of soil (clay and sandy) collected from an area cultivated with sugarcane and treated with 14C-radiolabeled solutions of the herbicides were incubated for 70 d. More 14C-CO2 was released when sulfometuron-methyl and hexazinone were applied in a mixture compared to when applied alone. Being used in a combination did not affect the mineralization of diuron. The soil texture directly influenced the mineralization, bound residue, and extractable residue of the three herbicides. The percentage of extractable residue decreased over time for all herbicides. Hexazinone and sulfometuron-methyl had the highest residue extracted on sandy soil when applied alone. Diuron showed the highest percentage of bound residue. The degradation of the three herbicides was higher in the clay soil regardless of the mode of application, which is related to the higher potential of the bacterial community in the clay soil to mineralize the herbicides.

8.
Chemosphere ; 255: 127033, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32417520

RESUMEN

Symbiosis among herbicide-metabolising microorganisms and phytoremediation plants may be an efficient alternative to remediate sulfentrazone-contaminated soils. This work evaluated the bioremediation of sulfentrazone-contaminated soils by symbiosis between bacteria (Bradyrhizobium sp.) and jack bean (Canavalia ensiformis L.). The experiment was carried out in a greenhouse between March and May of 2018, in the Universidade Federal do Espírito Santo (UFES). Four doses of sulfentrazone (0, 400, 800, and 1200 g ha-1 a. i.) were tested with and without inoculation with Bradyrhizobium sp. BR 2003 (SEMIA 6156) After 80 days of cultivation, plants were cut and soil was collected for determination of the herbicide residual levels and millet bioassay. The sulfentrazone concentration was significantly reduced by plant inoculation with Bradyrhizobium sp.: on average, concentrations were 18.97%, 23.82%, and 22.10% lower than in the absence of inoculation at doses of 400, 800, and 1200 g ha-1, respectively. Symbiosis promoted a reduction of up to 65% in residual soil herbicides. Under the 1200 g ha-1 dose, inoculation promoted greater plant height than in the uninoculated plant. Regardless of the dose of sulfentrazone, the dry root mass was higher in the inoculated plants. The microbiological indicators showed satisfactory results mainly for the dose of 400 g ha-1. The results of this study highlight the potential of positive interactions between symbiotic microorganisms and leguminous species, aiming toward the phytoremediation of sulfentrazone herbicide.


Asunto(s)
Bradyrhizobium/crecimiento & desarrollo , Canavalia/crecimiento & desarrollo , Herbicidas/análisis , Microbiología del Suelo , Contaminantes del Suelo/análisis , Sulfonamidas/análisis , Triazoles/análisis , Biodegradación Ambiental , Herbicidas/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismo , Sulfonamidas/metabolismo , Simbiosis , Triazoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA