Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Future Oncol ; 11(23): 3159-66, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26544922

RESUMEN

AIMS: This retrospective study aimed to investigate safety and efficacy of everolimus in patients with metastatic renal cell carcinoma (mRCC) and end-stage renal disease requiring dialysis. PATIENTS & METHODS: From November 2009 to December 2012, 11 mRCC patients undergoing dialysis were treated with everolimus after failure of anti-VEGF therapy at six Italian institutions. Patient characteristics, safety and outcomes were collected. RESULTS: Progression-free survival and overall survival were determined using the Kaplan-Meier method. Median progression-free survival and overall survival were 9.01 and 15.7 months, respectively. No unexpected adverse events were reported. CONCLUSION: Everolimus appears to be safe in mRCC patients with renal impairment or end-stage renal disease requiring dialysis. Larger prospective studies are required to confirm these findings.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/terapia , Everolimus/uso terapéutico , Neoplasias Renales/patología , Neoplasias Renales/terapia , Anciano , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Carcinoma de Células Renales/mortalidad , Terapia Combinada , Everolimus/administración & dosificación , Everolimus/efectos adversos , Femenino , Humanos , Estimación de Kaplan-Meier , Neoplasias Renales/mortalidad , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Estadificación de Neoplasias , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Diálisis Renal/métodos , Estudios Retrospectivos , Resultado del Tratamiento
2.
Intern Emerg Med ; 19(1): 71-79, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37794281

RESUMEN

Coronavirus disease 2019 (COVID-19) carries a high risk of vascular thrombosis. However, whether a specific anticoagulation intensity strategy may prevent clinical worsening in severe COVID-19 patients is still debated. We conducted a joint analysis of two randomized controlled trials, COVID-19 HD (NCT044082359) and EMOS-COVID (NCT04646655), to assess the efficacy and safety of two anticoagulant regimens in hospitalized severe COVID-19 patients. Subjects with COVID-19-associated respiratory compromise and/or coagulopathy were randomly assigned to low (4000 IU qd) or high (70 IU Kg-1 every 12 h) enoxaparin dose. The primary efficacy endpoint was clinical worsening within 30 days, defined as the occurrence of at least one of the following events, whichever came first: in-hospital death, evidence of arterial or venous thromboembolism, acute myocardial infarction, need for either continuous positive airway pressure (CPAP) or non-invasive ventilation (NIV) in patients receiving standard oxygen therapy or none at randomization, and need for mechanical ventilation in any patient. The safety endpoint was major bleeding. We estimated the relative risk (RR) and its 95% confidence interval (CI) for the outcomes. Among 283 patients included in the study (144 in the low-dose and 139 in the high-dose group), 118 (41.7%) were on NIV or CPAP at randomization. 23/139 (16.5%) patients in the high-dose group reached the primary endpoint compared to 33/144 (22.9%) in the low-dose group (RR 0.72, 95% CI 0.45-1.17). No major bleeding was observed. No significant differences were found in the clinical worsening of hospitalized COVID-19 patients treated with high versus low doses of enoxaparin.


Asunto(s)
COVID-19 , Heparina de Bajo-Peso-Molecular , Humanos , Anticoagulantes/efectos adversos , COVID-19/complicaciones , Enoxaparina/efectos adversos , Hemorragia/inducido químicamente , Heparina de Bajo-Peso-Molecular/efectos adversos , Mortalidad Hospitalaria , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Trials ; 21(1): 574, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32586394

RESUMEN

OBJECTIVES: To assess whether high doses of Low Molecular Weight Heparin (LMWH) (i.e. Enoxaparin 70 IU/kg twice daily) compared to standard prophylactic dose (i.e., Enoxaparin 4000 IU once day), in hospitalized patients with COVID19 not requiring Invasive Mechanical Ventilation [IMV], are: a)more effective in preventing clinical worsening, defined as the occurrence of at least one of the following events, whichever comes first: 1.Death2.Acute Myocardial Infarction [AMI]3.Objectively confirmed, symptomatic arterial or venous thromboembolism [TE]4.Need of either: a.Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) orb.IMV in patients who at randomisation were receiving standard oxygen therapy5.IMV in patients who at randomisation were receiving non-invasive mechanical ventilationb)Similar in terms of major bleeding risk TRIAL DESIGN: Multicentre, randomised controlled, superiority, open label, parallel group, two arms (1:1 ratio), in-hospital study. PARTICIPANTS: Inpatients will be recruited from 7 Italian Academic and non-Academic Internal Medicine Units, 2 Infectious Disease Units and 1 Respiratory Disease Unit. INCLUSION CRITERIA (ALL REQUIRED): 1. Age > 18 and < 80 years 2. Positive SARS-CoV-2 diagnostic (on pharyngeal swab of deep airways material) 3. Severe pneumonia defined by the presence of at least one of the following criteria: a.Respiratory Rate ≥25 breaths /minb.Arterial oxygen saturation≤93% at rest on ambient airc.PaO2/FiO2 ≤300 mmHg 4. Coagulopathy, defined by the presence of at least one of the following criteria: a.D-dimer >4 times the upper level of normal reference rangeb.Sepsis-Induced Coagulopathy (SIC) score >4 5. No need of IMV EXCLUSION CRITERIA: 1. Age <18 and >80 years 2. IMV 3. Thrombocytopenia (platelet count < 80.000 mm3) 4. Coagulopathy: INR >1.5, aPTT ratio > 1.4 5. Impaired renal function (eGFR calculated by CKD-EPI Creatinine equation < 30 ml/min) 6. Known hypersensitivity to enoxaparin 7. History of heparin induced thrombocytopenia 8. Presence of an active bleeding or a pathology susceptible of bleeding in presence of anticoagulation (e.g. recent haemorrhagic stroke, peptic ulcer, malignant cancer at high risk of haemorrhage, recent neurosurgery or ophthalmic surgery, vascular aneurysms, arteriovenous malformations) 9. Concomitant anticoagulant treatment for other indications (e.g. atrial fibrillation, venous thromboembolism, prosthetic heart valves) 10. Concomitant double antiplatelet therapy 11. Administration of therapeutic doses of LMWH, fondaparinux, or unfractionated heparin (UFH) for more than 72 hours before randomization; prophylactic doses are allowed 12. Pregnancy or breastfeeding or positive pregnancy test 13. Presence of other severe diseases impairing life expectancy (e.g. patients are not expected to survive 28 days given their pre-existing medical condition) 14. Lack or withdrawal of informed consent INTERVENTION AND COMPARATOR: Control Group (Low-Dose LMWH): patients in this group will be administered Enoxaparin (Inhixa®) at standard prophylactic dose (i.e., 4000 UI subcutaneously once day). Intervention Group (High-Dose LMWH): patients in this group will be administered Enoxaparin (Inhixa®) at dose of 70 IU/kg every 12 hours, as reported in the following table. This dose is commonly used in Italy when a bridging strategy is required for the management of surgery or invasive procedures in patients taking anti-vitamin K oral anticoagulants Body Weight (kg)Enoxaparin dose every 12 hours (IU)<50200050-69400070-89600090-1108000>11010000 The treatment with Enoxaparin will be initiated soon after randomization (maximum allowed starting time 12h after randomization). The treatment will be administered every 12 hours in the intervention group and every 24 hours in the control group. Treatments will be administered in the two arms until hospital discharge or the primary outcomes detailed below occur. MAIN OUTCOMES: Primary Efficacy Endpoint: Clinical worsening, defined as the occurrence of at least one of the following events, whichever comes first: 1.Death2.Acute Myocardial Infarction [AMI]3.Objectively confirmed, symptomatic arterial or venous thromboembolism [TE]4.Need of either: a.Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) orb.IMV in patients who at randomisation were in standard oxygen therapy by delivery interfaces5.Need for IMV, in patients who at randomisation were in Cpap or NIV Time to the occurrence of each of these events will be recorded. Clinical worsening will be analysed as a binary outcome as well as a time-to-event one. Secondary Efficacy Endpoints: Any of the following events occurring within the hospital stay 1.Death2.Acute Myocardial Infarction [AMI]3.Objectively confirmed, symptomatic arterial or venous thromboembolism [TE]4.Need of either: a.Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) orb.IMV in patients who at randomisation were in standard oxygen therapy by delivery interfaces5.Need for IMV in patients who at randomisation were in Cpap or NIV6.Improvement of laboratory parameters of disease severity, including: o D-dimer levelo Plasma fibrinogen levelso Mean Platelet Volumeo Lymphocyte/Neutrophil ratioo IL-6 plasma levels MORTALITY AT 30 DAYS: Information about patients' status will be sought in those who are discharged before 30 days on Day 30 from randomisation. Time to the occurrence of each of these events will be recorded. Each of these events will be analysed as a binary outcome and as a time-to-event one. Primary safety endpoint: Major bleeding, defined as an acute clinically overt bleeding associated with one or more of the following: Decrease in haemoglobin of 2 g/dl or more;Transfusion of 2 or more units of packed red blood cells;Bleeding that occurs in at least one of the following critical sites [intracranial, intraspinal, intraocular (within the corpus of the eye; thus, a conjunctival bleed is not an intraocular bleed), pericardial, intra-articular, intramuscular with compartment syndrome, or retroperitoneal];Bleeding that is fatal (defined as a bleeding event that was the primary cause of death or contributed directly to death);Bleeding that necessitates surgical intervention Time to the occurrence of each of these events will be recorded. Each of these events will be analysed as a binary outcome and as a time-to-event one. Secondary safety endpoint: Clinically Relevant non-major bleeding, defined as an acute clinically overt bleeding that does not meet the criteria for major and consists of: 1.Any bleeding compromising hemodynamic2.Spontaneous hematoma larger than 25 cm2, or 100 cm2 if there was a traumatic cause3.Intramuscular hematoma documented by ultrasonography4.Epistaxis or gingival bleeding requiring tamponade or other medical intervention5.Bleeding from venipuncture for >5 minutes6.Haematuria that was macroscopic and was spontaneous or lasted for more than 24 hours after invasive procedures7.Haemoptysis, hematemesis or spontaneous rectal bleeding requiring endoscopy or other medical intervention8.Any other bleeding requiring temporary cessation of a study drug. Time to the occurrence of each of these events will be recorded. Each of these events will be analysed as a binary outcome and as a time-to-event one. RANDOMISATION: Randomisation (with a 1:1 randomisation ratio) will be centrally performed by using a secure, web-based system, which will be developed by the Methodological and Statistical Unit at the Azienda Ospedaliero-Universitaria of Modena. Randomisation stratified by 4 factors: 1) Gender (M/F); 2) Age (<75/≥75 years); 3) BMI (<30/≥30); 4) Comorbidities (0-1/>2) with random variable block sizes will be generated by STATA software. The web-based system will guarantee the allocation concealment. Blinding (masking) The study is conceived as open-label: patients and all health-care personnel involved in the study will be aware of the assigned group. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The target sample size is based on the hypothesis that LMWH administered at high doses versus low doses will significantly reduce the risk of clinical worsening. The overall sample size in this study is expected to be 300 with 150 in the Low-Dose LMWH control group and 150 in the High-Dose LMWH intervention group, recruited over 10-11 months. Assuming an alpha of 5% (two tailed) and a percentage of patients who experience clinical worsening in the control group being between 25% and 30%, the study will have 80% power to detect at least 50% relative reduction in the risk of death between low and high doses of heparin. TRIAL STATUS: Protocol version 1.2 of 11/05/2020. Recruitment start (expected): 08/06/2020 Recruitment finish (expected): 30/04/2021 Trial registration EudraCT 2020-001972-13, registered on April 17th, 2020 Full protocol The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Asunto(s)
Anticoagulantes/uso terapéutico , Betacoronavirus , Trastornos de la Coagulación Sanguínea/tratamiento farmacológico , Infecciones por Coronavirus/tratamiento farmacológico , Heparina de Bajo-Peso-Molecular/uso terapéutico , Heparina/uso terapéutico , Neumonía Viral/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Adolescente , Adulto , Anciano , COVID-19 , Heparina/efectos adversos , Heparina de Bajo-Peso-Molecular/efectos adversos , Hospitalización , Humanos , Persona de Mediana Edad , Pandemias , Respiración Artificial , SARS-CoV-2 , Adulto Joven , Tratamiento Farmacológico de COVID-19
4.
Trials ; 21(1): 724, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32807241

RESUMEN

OBJECTIVES: To assess the hypothesis that an adjunctive therapy with methylprednisolone and unfractionated heparin (UFH) or with methylprednisolone and low molecular weight heparin (LMWH) are more effective in reducing any-cause mortality in critically-ill ventilated patients with pneumonia from SARS-CoV-2 infection compared to LMWH alone. TRIAL DESIGN: The study is designed as a multi-centre, interventional, parallel group, superiority, randomized, investigator sponsored, three arms study. Patients, who satisfy all inclusion criteria and no exclusion criteria, will be randomly assigned to one of the three treatment groups in a ratio 1:1:1. PARTICIPANTS: Inpatients will be recruited from 8 Italian Academic and non-Academic Intensive Care Units INCLUSION CRITERIA (ALL REQUIRED): 1. Positive SARS-CoV-2 diagnostic (on pharyngeal swab of deep airways material) 2. Positive pressure ventilation (either non-invasive or invasive) from > 24 hours 3. Invasive mechanical ventilation from < 96 hours 4. PaO2/FiO2 ratio lower than 150 mmHg 5. D-dimer level > 6 times the upper limit of normal reference range 6. C-reactive Protein > 6-fold upper the limit of normal reference range EXCLUSION CRITERIA: 1. Age < 18 years 2. On-going treatment with anticoagulant drugs 3. Platelet count < 100.000/mm3 4. History of heparin-induced thrombocytopenia 5. Allergy to sodium enoxaparin or other LMWH, UFH or methylprednisolone 6. Active bleeding or on-going clinical condition deemed at high risk of bleeding contraindicating anticoagulant treatment 7. Recent (in the last 1 month prior to randomization) brain, spinal or ophthalmic surgery 8. Chronic assumption or oral corticosteroids 9. Pregnancy or breastfeeding or positive pregnancy test. In childbearing age women, before inclusion, a pregnancy test will be performed if not available 10. Clinical decision to withhold life-sustaining treatment or "too sick to benefit" 11. Presence of other severe diseases impairing life expectancy (e.g. patients are not expected to survive 28 days given their pre-existing medical condition) 12. Lack or withdrawal of informed consent INTERVENTION AND COMPARATOR: • LMWH group: patients in this group will be administered enoxaparin at standard prophylactic dosage. • LMWH + steroid group: patients in this group will receive enoxaparin at standard prophylactic dosage and methylprednisolone. • UFH + steroid group: patients in this group will receive UFH at therapeutic dosages and methylprednisolone. UFH will be administered intravenously in UFH + steroid group at therapeutic doses. The infusion will be started at an infusion rate of 18 UI/kg/hour and then modified to obtain aPTT Ratio in between the range of 1.5-2.0. aPTT will be periodically checked at intervals no longer than 12 hours. The treatment with UFH will be administered up to ICU discharge. After ICU discharge anticoagulant therapy may be interrupted or switched to prophylaxis with LMWH in the destination ward up to clinical judgement of the attending physician. Enoxaparin will be administered in both LMWH group and LMWH + steroid group at standard prophylactic dose (i.e., 4000 UI once day, increased to 6000 UI once day for patients weighting more than 90 kg). The treatment will be administered subcutaneously once a day up to ICU discharge. After ICU discharge it may be continued or interrupted in the destination ward up to clinical judgement of the attending physician. Methylprednisolone will be administered in both LMWH + steroid group and UHF + steroid group intravenously with an initial bolus of 0,5 mg/kg followed by administration of 0,5 mg/kg 4 times daily for 7 days, 0,5 mg/kg 3 times daily from day 8 to day 10, 0,5 mg/kg 2 times daily at days 11 and 12 and 0,5 mg/kg once daily at days 13 and 14. MAIN OUTCOMES: Primary Efficacy Endpoint: All-cause mortality at day 28 Secondary Efficacy Endpoints: - Ventilation free days (VFDs) at day 28, defined as the total number of days that patient is alive and free of ventilation (either invasive or non-invasive) between randomization and day 28 (censored at hospital discharge). - Need of rescue administration of high-dose steroids or immune-modulatory drugs; - Occurrence of switch from non-invasive to invasive mechanical ventilation during ICU stay; - Delay from start of non-invasive ventilation to switch to invasive ventilation; - All-cause mortality at ICU discharge and hospital discharge; - ICU free days (IFDs) at day 28, defined as the total number of days between ICU discharge and day 28. - Occurrence of new infections from randomization to day 28; including infections by Candida, Aspergillus, Adenovirus, Herpes Virus e Cytomegalovirus - Occurrence of new organ dysfunction and grade of dysfunction during ICU stay. - Objectively confirmed venous thromboembolism, stroke or myocardial infarction; Safety endpoints: - Occurrence of major bleeding, defined as transfusion of 2 or more units of packed red blood cells in a day, bleeding that occurs in at least one of the following critical sites [intracranial, intra-spinal, intraocular (within the corpus of the eye; thus, a conjunctival bleed is not an intraocular bleed), pericardial, intra-articular, intramuscular with compartment syndrome, or retroperitoneal], bleeding that necessitates surgical intervention and bleeding that is fatal (defined as a bleeding event that was the primary cause of death or contributed directly to death); - Occurrence of clinically relevant non-major bleeding, defined ad acute clinically overt bleeding that does not meet the criteria for major and consists of any bleeding compromising hemodynamic; spontaneous hematoma larger than 25 cm2, intramuscular hematoma documented by ultrasonography, haematuria that was macroscopic and was spontaneous or lasted for more than 24 hours after invasive procedures; haemoptysis, hematemesis or spontaneous rectal bleeding requiring endoscopy or other medical intervention or any other bleeding requiring temporary cessation of a study drug. RANDOMIZATION: A block randomisation will be used with variable block sizes (block size 4-6-8), stratified by 3 factors: Centre, BMI (<30/≥30) and Age (<75/≥75). Central randomisation will be performed using a secure, web-based, randomisation system with an allocation ratio of 1:1:1. The allocation sequence will be generated by the study statistician using computer generated random numbers. BLINDING (MASKING): Participants to the study will be blinded to group assignment. NUMBERS TO BE RANDOMISED (SAMPLE SIZE): The target sample size is based on the hypothesis that the combined use of UHF and steroid versus the LMWH group will significantly reduce the risk of death at day 28. The overall sample size in this study is expected to be 210 with a randomization 1:1:1 and seventy patients in each group. Assuming an alpha of 2.5% (two tailed) and mortality rate in LMWH group of 50%, as indicated from initial studies of ICU patients, the study will have an 80% power to detect at least a 25 % absolute reduction in the risk of death between: a) LMHW + steroid group and LMWH group or b) UHF + steroid group and LMWH group. The study has not been sized to assess the difference between LMHW + steroid group and UHF + steroid group, therefore the results obtained from this comparison will need to be interpreted with caution and will need further adequately sized studies confirm the effect. On the basis of a conservative estimation, that 8 participating sites admit an average of 3 eligible patients per month per centre (24 patients/month). Assuming that 80 % of eligible patients are enrolled, recruitment of 210 participants will be completed in approximately 10 months. TRIAL STATUS: Protocol version 1.1 of April 26th, 2020. Recruitment start (expected): September 1st, 2020 Recruitment finish (expected): June 30th, 2021 TRIAL REGISTRATION: EudraCT number 2020-001921-30 , registered on April 15th, 2020 AIFA approval on May 4th, 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/tratamiento farmacológico , Enfermedad Crítica , Heparina/administración & dosificación , Metilprednisolona/administración & dosificación , Neumonía Viral/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial , Adulto , COVID-19 , Heparina/efectos adversos , Heparina de Bajo-Peso-Molecular/uso terapéutico , Humanos , Metilprednisolona/efectos adversos , Pandemias , Tiempo de Tromboplastina Parcial , SARS-CoV-2
5.
Clin Genitourin Cancer ; 18(6): 477-488, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32732112

RESUMEN

BACKGROUND: Immunotherapy has brought clinical benefits to patients with metastatic renal cell cancer (mRCC). Most patients tolerate immunotherapy but serious immune-related adverse events (irAEs) have been reported. Some studies indicate a correlation between irAEs and clinical response in other cancer types (eg, lung cancer and melanoma). For patients with mRCC, the impact of irAE on clinical outcome is unknown. PATIENTS AND METHODS: A retrospective review of 167 patients with mRCC treated with nivolumab as standard of care between March 2017 and January 2018 in 16 Italian centers was performed. irAEs were assessed using Common Terminology Criteria for Adverse Events (CTCAE) v.4.0. RESULTS: Any grade and grade 3/4 irAEs occurred in 46% and 8.9% of patients, respectively. The median time to appearance of irAEs was 10 weeks; 38.8% of patients required steroid treatment. The most common irAEs were cutaneous (33.7%) and gastrointestinal (23.3%). The median overall survival and progression-free survival were 20.13 and 7.86 months, respectively. Patients with irAEs showed a greater overall survival (hazard ratio, 0.38; 95% confidence interval [CI], 0.23-0.63) and progression-free survival (hazard ratio, 0.44; 95% CI, 0.29-0.66) benefit as well as better overall response rate (27.3% vs. 13.7%; odds ratio, 2.36; 95% CI, 1.03-5.44) and disease control rate (68.8% vs. 48%; odds ratio, 2.4; 95% CI, 1.23-4.67) if compared with those without irAEs. No correlation was found between steroid use and clinical outcomes. CONCLUSIONS: Our analysis revealed that the appearance of irAEs was associated with better outcomes in patients treated with nivolumab. This data may be limited by sample size and the retrospective nature of the study.


Asunto(s)
Antineoplásicos Inmunológicos , Carcinoma de Células Renales , Neoplasias Renales , Antineoplásicos Inmunológicos/efectos adversos , Carcinoma de Células Renales/tratamiento farmacológico , Humanos , Italia/epidemiología , Neoplasias Renales/tratamiento farmacológico , Nivolumab/efectos adversos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA