Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 109(50): 20590-5, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-23169664

RESUMEN

There is no effective treatment for the cardiomyopathy of the most common autosomal recessive ataxia, Friedreich ataxia (FA). This disease is due to decreased expression of the mitochondrial protein, frataxin, which leads to alterations in mitochondrial iron (Fe) metabolism. The identification of potentially toxic mitochondrial Fe deposits in FA suggests Fe plays a role in its pathogenesis. Studies using the muscle creatine kinase (MCK) conditional frataxin knockout mouse that mirrors the disease have demonstrated frataxin deletion alters cardiac Fe metabolism. Indeed, there are pronounced changes in Fe trafficking away from the cytosol to the mitochondrion, leading to a cytosolic Fe deficiency. Considering Fe deficiency can induce apoptosis and cell death, we examined the effect of dietary Fe supplementation, which led to body Fe loading and limited the cardiac hypertrophy in MCK mutants. Furthermore, this study indicates a unique effect of heart and skeletal muscle-specific frataxin deletion on systemic Fe metabolism. Namely, frataxin deletion induces a signaling mechanism to increase systemic Fe levels and Fe loading in tissues where frataxin expression is intact (i.e., liver, kidney, and spleen). Examining the mutant heart, native size-exclusion chromatography, transmission electron microscopy, Mössbauer spectroscopy, and magnetic susceptibility measurements demonstrated that in the absence of frataxin, mitochondria contained biomineral Fe aggregates, which were distinctly different from isolated mammalian ferritin molecules. These mitochondrial aggregates of Fe, phosphorus, and sulfur, probably contribute to the oxidative stress and pathology observed in the absence of frataxin.


Asunto(s)
Ataxia de Friedreich/metabolismo , Hierro/metabolismo , Mitocondrias Cardíacas/metabolismo , Animales , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiomegalia/prevención & control , Forma MM de la Creatina-Quinasa/genética , Forma MM de la Creatina-Quinasa/metabolismo , Modelos Animales de Enfermedad , Ataxia de Friedreich/genética , Ataxia de Friedreich/patología , Humanos , Hierro/sangre , Proteína 2 Reguladora de Hierro/metabolismo , Hierro de la Dieta/administración & dosificación , Proteínas de Unión a Hierro/antagonistas & inhibidores , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Ratones Mutantes , Microscopía Electrónica de Transmisión , Miocardio/metabolismo , Miocardio/ultraestructura , Transducción de Señal , Espectroscopía de Mossbauer , Frataxina
2.
Biochem J ; 451(1): 61-7, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23363555

RESUMEN

AI (anaemia of inflammation) often manifests in patients with chronic immune activation due to cancer, chronic infections, autoimmune disorders, rheumatoid arthritis and other diseases. The pathogenesis of AI is complex and involves cytokine-mediated inhibition of erythropoiesis, insufficient erythropoietin production and diminished sensitivity of erythroid progenitors to this hormone, and retention of iron in haemoglobin-processing macrophages. NO (nitric oxide) is a gaseous molecule produced by activated macrophages that has been identified as having numerous effects on iron metabolism. In the present study, we explore the possibility that NO affects iron metabolism in reticulocytes and our results suggest that NO may also contribute to AI. We treated reticulocytes with the NO donor SNP (sodium nitroprusside). The results indicate that NO inhibits haem synthesis dramatically and rapidly at the level of erythroid-specific 5-aminolaevulinic acid synthase 2, which catalyses the first step of haem synthesis in erythroid cells. We also show that NO leads to the inhibition of iron uptake via the Tf (transferrin)-Tf receptor pathway. In addition, NO also causes an increase in eIF2α (eukaryotic initiation factor 2α) phosphorylation levels and decreases globin translation. The profound impairment of haem synthesis, iron uptake and globin translation in reticulocytes by NO raises the possibility that this gas may also contribute to AI.


Asunto(s)
Hemo/biosíntesis , Hierro/metabolismo , Óxido Nítrico/metabolismo , Reticulocitos/metabolismo , 5-Aminolevulinato Sintetasa/metabolismo , Anemia/metabolismo , Anemia/patología , Animales , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Ratones , Fosforilación , Receptores de Transferrina/metabolismo , Reticulocitos/patología
3.
Proc Natl Acad Sci U S A ; 105(28): 9757-62, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18621680

RESUMEN

There is no effective treatment for the cardiomyopathy of the most common autosomal recessive ataxia, Friedreich's ataxia (FA). The identification of potentially toxic mitochondrial (MIT) iron (Fe) deposits in FA suggests that Fe plays a role in its pathogenesis. This study used the muscle creatine kinase conditional frataxin (Fxn) knockout (mutant) mouse model that reproduces the classical traits associated with cardiomyopathy in FA. We examined the mechanisms responsible for the increased cardiac MIT Fe loading in mutants. Moreover, we explored the effect of Fe chelation on the pathogenesis of the cardiomyopathy. Our investigation showed that increased MIT Fe in the myocardium of mutants was due to marked transferrin Fe uptake, which was the result of enhanced transferrin receptor 1 expression. In contrast to the mitochondrion, cytosolic ferritin expression and the proportion of cytosolic Fe were decreased in mutant mice, indicating cytosolic Fe deprivation and markedly increased MIT Fe targeting. These studies demonstrated that loss of Fxn alters cardiac Fe metabolism due to pronounced changes in Fe trafficking away from the cytosol to the mitochondrion. Further work showed that combining the MIT-permeable ligand pyridoxal isonicotinoyl hydrazone with the hydrophilic chelator desferrioxamine prevented cardiac Fe loading and limited cardiac hypertrophy in mutants but did not lead to overt cardiac Fe depletion or toxicity. Fe chelation did not prevent decreased succinate dehydrogenase expression in the mutants or loss of cardiac function. In summary, we show that loss of Fxn markedly alters cellular Fe trafficking and that Fe chelation limits myocardial hypertrophy in the mutant.


Asunto(s)
Cardiomegalia/etiología , Ferritinas/metabolismo , Ataxia de Friedreich/etiología , Quelantes del Hierro/farmacología , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Transporte Biológico , Cardiomegalia/metabolismo , Modelos Animales de Enfermedad , Ferritinas/análisis , Ataxia de Friedreich/complicaciones , Ataxia de Friedreich/metabolismo , Hierro/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Frataxina
4.
Exp Hematol ; 38(8): 609-17, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20394798

RESUMEN

OBJECTIVE: Divalent metal transporter 1 (DMT1) and natural resistance-associated macrophage protein 1 (Nramp1) are iron transporters that localize, respectively, to the early and late endosomal compartments. DMT1 is ubiquitously expressed, while Nramp1 is found only within macrophages and neutrophils. Our previous studies have identified a role for Nramp1 during macrophage erythrophagocytosis; however, little is known about the function of DMT1 during this process. MATERIALS AND METHODS: Wild-type RAW264.7 macrophages (RAW), and those stably transfected with Nramp1 (RAW/Nramp1) were treated with either DMT1-small interfering RNA, or with ebselen, a selective inhibitor of DMT1. RESULTS: Although macrophages lacking either functional DMT1 or Nramp1 experienced a moderate reduction in iron recycling efficiency, the ability of macrophages lacking both functional DMT1 and Nramp1 to recycle hemoglobin-derived iron was severely compromised. Compared to macrophages singly deficient in either DMT1 or Nramp1 transport ability, macrophages where DMT1 and Nramp1 were both compromised exhibited an abrogated increase in labile iron pool content, released less iron, and experienced diminished upregulation of ferroportin and heme-oxygenase 1 levels following erythrophagocytosis. CONCLUSIONS: These results suggest that although the loss of either Nramp1 or DMT1 transport ability results in minor impairment after erythrophagocytosis, the simultaneous loss of both Nramp1 and DMT1 iron transport activity is detrimental to the iron recycling capacity of the macrophage.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Hemoglobinas/metabolismo , Hierro/metabolismo , Macrófagos/metabolismo , Animales , Transporte Biológico/fisiología , Células CHO , Proteínas de Transporte de Catión/genética , Cricetinae , Cricetulus , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Ratones , Neutrófilos/metabolismo , ARN Interferente Pequeño , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA