Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Genes Dev ; 32(1): 42-57, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29378788

RESUMEN

Gene expression is regulated by promoters, which initiate transcription, and enhancers, which control their temporal and spatial activity. However, the discovery that mammalian enhancers also initiate transcription questions the inherent differences between enhancers and promoters. Here, we investigate the transcriptional properties of enhancers during Drosophila embryogenesis using characterized developmental enhancers. We show that while the timing of enhancer transcription is generally correlated with enhancer activity, the levels and directionality of transcription are highly varied among active enhancers. To assess how this impacts function, we developed a dual transgenic assay to simultaneously measure enhancer and promoter activities from a single element in the same embryo. Extensive transgenic analysis revealed a relationship between the direction of endogenous transcription and the ability to function as an enhancer or promoter in vivo, although enhancer RNA (eRNA) production and activity are not always strictly coupled. Some enhancers (mainly bidirectional) can act as weak promoters, producing overlapping spatio-temporal expression. Conversely, bidirectional promoters often act as strong enhancers, while unidirectional promoters generally cannot. The balance between enhancer and promoter activity is generally reflected in the levels and directionality of eRNA transcription and is likely an inherent sequence property of the elements themselves.


Asunto(s)
Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Regiones Promotoras Genéticas , ARN no Traducido/biosíntesis , Transcripción Genética , Animales , Drosophila/embriología , Drosophila/genética , Desarrollo Embrionario/genética , Humanos , Células K562
2.
J Hypertens ; 42(6): 984-999, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690903

RESUMEN

Nox1 signaling is a causal key element in arterial hypertension. Recently, we identified protein disulfide isomerase A1 (PDI) as a novel regulatory protein that regulates Nox1 signaling in VSMCs. Spontaneously hypertensive rats (SHR) have increased levels of PDI in mesenteric resistance arteries compared with Wistar controls; however, its consequences remain unclear. Herein, we investigated the role of PDI in mediating Nox1 transcriptional upregulation and its effects on vascular dysfunction in hypertension. We demonstrate that PDI contributes to the development of hypertension via enhanced transcriptional upregulation of Nox1 in vascular smooth muscle cells (VSMCs). We show for the first time that PDI sulfenylation by hydrogen peroxide contributes to EGFR activation in hypertension via increased shedding of epidermal growth factor-like ligands. PDI also increases intracellular calcium levels, and contractile responses induced by ANG II. PDI silencing or pharmacological inhibition in VSMCs significantly decreases EGFR activation and Nox1 transcription. Overexpression of PDI in VSMCs enhances ANG II-induced EGFR activation and ATF1 translocation to the nucleus. Mechanistically, PDI increases ATF1-induced Nox1 transcription and enhances the contractile responses to ANG II. Herein we show that ATF1 binding to Nox1 transcription putative regulatory regions is augmented by PDI. Altogether, we provide evidence that HB-EGF in SHR resistance vessels promotes the nuclear translocation of ATF1, under the control of PDI, and thereby induces Nox1 gene expression and increases vascular reactivity. Thus, PDI acts as a thiol redox-dependent enhancer of vascular dysfunction in hypertension and could represent a novel therapeutic target for the treatment of this disease.


Asunto(s)
Hipertensión , Músculo Liso Vascular , NADPH Oxidasa 1 , Proteína Disulfuro Isomerasas , Ratas Endogámicas SHR , Regulación hacia Arriba , Animales , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/genética , NADPH Oxidasa 1/metabolismo , NADPH Oxidasa 1/genética , Hipertensión/fisiopatología , Hipertensión/genética , Hipertensión/metabolismo , Ratas , Músculo Liso Vascular/metabolismo , Masculino , Miocitos del Músculo Liso/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ratas Wistar , Transcripción Genética
3.
Stem Cell Res ; 50: 102133, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33383406

RESUMEN

Human embryonic stem cells (hESCs) are an invaluable tool in the fields of embryology and regenerative medicine. Activin A and BMP4 are well-characterised growth factors implicated in pluripotency and differentiation. In the current study, hESCs are cultured in a modified version of mTeSR1, where low concentrations of ActivinA substitute for TGFß. This culture system is further used to investigate the changes induced by BMP4 on hESCs by employing a combination of transcriptomic and phosphoproteomic approaches. Results indicate that in a pluripotent state, hESCs maintain WNT signaling under negative regulation by expressing pathway inhibitors. Initial stages of differentiation are characterized by upregulation of WNT pathway ligands, TGFß pathway inhibitors which have been shown in Xenopus to expand the BMP signaling range essential for embryonic patterning, and mesendodermal transcripts. Moreover, BMP4 enhances the phosphorylation of proteins associated with migration and transcriptional regulation. Results further indicate the vital regulatory role of Activin A and BMP4 in crucial fate decisions in hESCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA