Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Chemistry ; : e202401430, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825835

RESUMEN

Herein, we report monomeric and dimeric norbornadiene-quadricyclane molecular photoswitch systems intended for molecular solar thermal applications. A series of six new norbornadiene derivatives conjugated with benzothiadiazole as the acceptor unit and dithiafulvene as the donor unit were synthesized and fully characterized. The photoswitches were evaluated by experimentally and theoretically measuring optical absorption profiles and thermal conversion of quadricyclane to norbornadiene. Computational insight by density functional theory calculations at the M06-2X/def2-SVPD level of theory provided geometries, storage energies, UV-vis absorption spectra and HOMO-LUMO levels, that are used to describe the function of the molecular systems. The studied molecules exhibit absorption onset ranging from 416 nm to 595 nm due to a systemic change in their donor-acceptor character. This approach was advantageous due to the introduction of benzothiadiazole and the dimeric nature of molecular structures. The best-performing system has a half-life of 3 days.

2.
Chemistry ; 30(5): e202302688, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37930277

RESUMEN

In one-dimensional polycyclic aromatic hydrocarbons (PAHs) containing five- and six-membered rings fused together, one key question is whether the structures possess a quinoidal or aromatic diradical character. Here, we generate such PAHs by reversible oxidation of PAH-extended tetrathiafulvalenes (TTFs). Extended TTFs were thus prepared and studied for their geometrical properties (crystallography), redox properties, and UV/Vis/NIR/EPR characteristics as a function of charge state. The EPR measurements of radical cations showed unique features for each PAH-TTF. The dications, formally composed of fluoreno[3,2-b]fluorene and diindeno[1,2-b:1',2'-i]anthracene cores, were experimentally found to exhibit singlet ground states. For the latter, calculations reveal the closed shell, quinoid singlet state to be isoenergetic with the open shell singlet diradical. Each charge state exhibited unique optical properties with radical cations absorbing strongly in the NIR region with signatures from π-dimers for the large core. The experimental results were paralleled and supported by detailed computations, including spin density distribution calculations, EPR simulations, and nucleus independent chemical shift (NICS) xy scans.

3.
Chemistry ; 30(34): e202400322, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629212

RESUMEN

This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.


Asunto(s)
Péptidos beta-Amiloides , Colorantes Fluorescentes , Pirenos , Colorantes Fluorescentes/química , Pirenos/química , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Norbornanos/química , Placa Amiloide/química , Placa Amiloide/diagnóstico por imagen , Teoría Funcional de la Densidad , Isomerismo , Espectrometría de Fluorescencia
4.
J Phys Chem A ; 128(1): 41-50, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38152898

RESUMEN

In this paper, we investigate the effects of solvation on the solar energy storage properties of bicyclooctadiene/tetracyclooctane (BOD/TCO) photoswitches. The solvent effects on the thermochemical and optical properties are studied in cyclohexane, toluene, dichloromethane, ethanol, acetonitrile, and a vacuum using density functional theory and coupled cluster theory. Our results show that the energy storage capacity of the BOD/TCO system increases as the solvent polarity increases, and the change is more significant with an unsubstituted system. The energy storage capacity of the substituted system is not dependent on the polarity of the solvent. As the solvent polarity increases, the absorption peaks shift away from each other and the absorption intensities increase. Overall, the solvents improve the performance of the optical properties and the energy storage capacities of the BOD/TCO molecular solar thermal systems.

5.
J Phys Chem A ; 128(13): 2602-2610, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38511966

RESUMEN

Molecules that can undergo reversible chemical transformations following the absorption of light, the so-called molecular photoswitches, have attracted increasing attention in technologies, such as solar energy storage. Here, the optical and thermochemical properties of the photoswitch are central to its applicability, and these properties are influenced significantly by solvation. We investigate the effects of solvation on two norbornadiene/quadricyclane photoswitches. Emphasis is put on the energy difference between the two isomers and the optical absorption as these are central to the application of the systems in solar energy storage. Using a combined classical molecular dynamics and quantum mechanical/molecular mechanical computational scheme, we showcase that the dynamic effects of solvation are important. In particular, it is found that standard implicit solvation models generally underestimate the energy difference between the two isomers and overestimate the strength of the absorption, while the explicit solvation spectra are also less red-shifted than those obtained using implicit solvation models. We also find that the absorption spectra of the two systems are strongly correlated with specific dihedral angles. Altogether, this highlights the importance of including the dynamic effects of solvation.

6.
J Chem Phys ; 160(10)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38477336

RESUMEN

In this paper, we develop and analyze a number of perturbation series that target the coupled cluster singles and doubles (CCSD) ground state energy. We show how classical Møller-Plesset perturbation theory series can be restructured to target the CCSD energy based on a reference CCS calculation and how the corresponding cluster perturbation series differs from the classical Møller-Plesset perturbation series. Subsequently, we reformulate these series using the coupled cluster Lagrangian framework to obtain series, where fourth and fifth order energies are determined only using parameters through second order. To test the methods, we perform a series of test calculations on molecular photoswitches of both total energies and reaction energies. We find that the fifth order reaction energies are of CCSD quality and that they are of comparable accuracy to state-of-the-art approximations to the CCSD energy based on local pair natural orbitals. The advantage of the present approach over local correlation methods is the absence of user defined threshold parameters for neglecting or approximating contributions to the correlation energy. Fixed threshold parameters lead to discontinuous energy surfaces, although this effect is often small enough to be ignored, but the present approach has a differentiable energy that will facilitate derivation and implementation of gradients and higher derivatives. A further advantage is that the calculation of the perturbation correction is non-iterative and can, therefore, be calculated in parallel, leading to a short time-to-solution.

7.
Chemistry ; 29(58): e202301815, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37458527

RESUMEN

We describe a concise synthetic strategy for the preparation of heterocyclic [9]helicenes and a simple preparative-scale protocol for the optical resolution of the resulting M- and P-enantiomers. The helicenes were characterized by single-crystal X-ray diffraction along with a range of spectroscopic and computational techniques. A fluorescence quantum yield of up to 65 % was observed, and the chiroptical properties of both M- and P-helicenes revealed large dissymmetry factors. The circularly polarized luminescence brightness reaches up to 17 M-1 cm-1 , as measured experimentally and verified computationally, which makes this the highest circularly polarized luminescence brightness among heterocyclic helicenes. We describe how chiroptical properties (both circular dichroism and circularly polarized luminescence) can be described and predicted using quantum chemical calculations. The synthetic approach also reveals by-products that originate from internal oxidation reactions, presumably mediated by the close proximity of the π-surfaces in the helicene structure.

8.
Phys Chem Chem Phys ; 25(33): 21964-21969, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37554092

RESUMEN

Solar energy conversion and storage are vital for combating climate change. Molecular solar thermal systems offer a promising solution, where energy is stored in molecular compounds. This study investigates dyad molecular photoswitches by combining bicyclooctadiene/tetracyclooctane and dihydroazulene/vinylheptafulvene systems with phenyl and cyano groups. Density functional theory calculations were employed to determine molecular properties and consider solvation effects in toluene and dichloromethane. The results show that the combined systems have a predicted storage energy of up to 206.14 kJ mol-1 and an absorption peak at 390.26 nm with appreciable intensity. These dyad photoswitches exhibit favorable properties for molecular solar thermal storage and other applications. A comparison with individual photoswitches reveals advantages and disadvantages. The most effective conjugate has a slightly lower storage density than an equal mixture of individual systems, but it demonstrates better absorption characteristics, with improved overlap with the solar spectrum and higher absorption intensity. These findings contribute to the understanding of dyad molecular photoswitches, showcasing their potential for advanced energy storage and conversion technologies.

9.
Phys Chem Chem Phys ; 25(17): 12277-12283, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37078770

RESUMEN

With this work we first test various DFT functionals against CCSD(T) for calculation of EFGs at the position of Cd(II) in a very small model system, Cd(SCH3)2. Moreover, the available basis sets in ADF are tested in terms of basis set convergence, and the effect of including relativistic effects using the scalar relativistic and spin orbit ZORA Hamiltonians is explored. The results indicate that an error of up to around 10% on the calculated EFG may be expected using spin-orbit ZORA and the BHandHLYP functional with a locally dense basis set. Next, this method was applied to model systems of the CueR protein, aiming to interpret 111Ag-PAC spectroscopic data. Note that 111Ag decays to 111Cd on which the PAC data are recorded. Surprisingly, model systems truncated - as is often done - at the first C-C bond from the central Cd(II) are inadequate in size, and larger model systems must be employed to achieve reliable EFG calculations. The calculated EFGs agree well with experimental PAC data, and indicate that shortly after the nuclear decay the structure relaxes from linear two-coordinate AgS2 in the native protein, to a structure (or structures) where Cd(II) recruits additional ligands such as backbone carbonyl oxygens to achieve higher coordination number(s).

10.
J Phys Chem A ; 127(1): 122-130, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36548541

RESUMEN

In this work, one geometrical aromaticity index and four electron sharing indexes are benchmarked for their application in excited state aromaticity calculations. Two computationally feasible and reliable procedures are identified, namely, CAM-B3LYP/cc-pVTZ and ωB97X-D/cc-pVTZ. Topological effects on the first excited singlet and triplet electronic manifold were investigated, and the latter was in general found to display more aromatic character compared to the S1 surface. Besides, geometrical relaxation on each of the manifolds was observed to hamper the aromaticity, thereby resulting in more antiaromatic character. The relative order of excited state aromaticity within the studied molecules was noted to resemble the reversed version of the relative order of ground state aromaticity. Thereby, the following generalization was postulated: The more aromatic a molecule is in its ground state, the more antiaromatic it will be in its electronic first excited manifolds.

11.
J Phys Chem A ; 127(45): 9601-9611, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37931218

RESUMEN

The charge transfer dynamics of the bridged perylene dimer were investigated with the recently developed solvent coupling Redfield time propagation model. The results are compared with previous experimental findings to showcase the significance and applicability of the model. The charge transfer dynamics in vacuum showed that no breaking of the charge transfer direction symmetry occurred upon optical excitation, in perfect agreement with the experiment. Meanwhile, attractive solute-solvent interactions facilitated by the dipole moments of the polar solvents were observed to break the charge transfer direction symmetry. The conformational isomerism effect on the transfer dynamics manifested itself by promoting different transport channels upon solvation. Consequently, the solvent coupling Redfield time propagation model was indeed found to be able to quantitatively describe the charge transfer dynamics including exotic phenomena such as symmetry breaking of charge transfer direction.

12.
J Phys Chem A ; 127(34): 7058-7069, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37607346

RESUMEN

We have investigated dynamic solvent effects on molecular solar-thermal energy storage systems using models describing the effects of frequency dependent viscosities and dielectric constants on chemical reaction rates. We have utilized the generalized Langevin model for understanding how the reactions are affected by the frequency dependent viscosities and dielectric constants. Our results show that the rate constants of the molecular solar-thermal energy storage systems depend strongly on the dielectric electric solvent properties and the frequency dependent viscosities of the solvents.

13.
J Chem Phys ; 158(12): 124118, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37003784

RESUMEN

In this article, a modification of the second-order polarization propagator approximation (SOPPA) method is introduced and illustrated for the calculation of the indirect nuclear spin-spin couplings. The standard SOPPA method, although cheaper in terms of computational cost, offers less accurate results than the ones obtained with coupled cluster methods. A new method, named SOPPA+A3-3, was therefore developed by adding the terms of the third-order A matrix that rely on the second-order double amplitudes. The performance of this third-order contribution was studied using the coupled cluster singles and doubles method as a reference, calculating the spin-spin couplings of molecules of diverse sizes and compositions, and comparing them to the SOPPA method. The results show that inclusion of this third-order contribution gives more accurate results than the standard SOPPA method with a level of accuracy close to that of the coupled cluster method with only a small increase in the computational cost of the response calculation that dominates the computational cost for small- to medium-sized molecules. The implementation of the first contributions to the third-order polarization propagator approximation in the Dalton program, thus, already shows a significant change in these molecular properties over those obtained with the standard SOPPA method.

14.
J Chem Phys ; 158(14): 144111, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37061462

RESUMEN

We present here a massively parallel implementation of the recently developed CPS(D-3) excitation energy model that is based on cluster perturbation theory. The new algorithm extends the one developed in Baudin et al. [J. Chem. Phys., 150, 134110 (2019)] to leverage multiple nodes and utilize graphical processing units for the acceleration of heavy tensor contractions. Furthermore, we show that the extended algorithm scales efficiently with increasing amounts of computational resources and that the developed code enables CPS(D-3) excitation energy calculations on large molecular systems with a low time-to-solution. More specifically, calculations on systems with over 100 atoms and 1000 basis functions are possible in a few hours of wall clock time. This establishes CPS(D-3) excitation energies as a computationally efficient alternative to those obtained from the coupled-cluster singles and doubles model.

15.
Angew Chem Int Ed Engl ; 62(40): e202309543, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37489860

RESUMEN

Photoswitches are molecular systems that are chemically transformed subsequent to interaction with light and they find potential application in many new technologies. The design and discovery of photoswitch candidates require intricate molecular engineering of a range of properties to optimize a candidate to a specific applications, a task which can be tackled efficiently using quantum chemical screening procedures. In this paper, we perform a large scale screening of approximately half a million bicyclic diene photoswitches in the context of molecular solar thermal energy storage using ab initio quantum chemical methods. We further device an efficient strategy for scoring the systems based on their predicted solar energy conversion efficiency and elucidate potential pitfalls of this approach. Our search through the chemical space of bicyclic dienes reveals systems with unprecedented solar energy conversion efficiencies and storage densities that show promising design guidelines for next generation molecular solar thermal energy storage systems.

16.
Phys Chem Chem Phys ; 24(18): 11395-11411, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35503101

RESUMEN

In the gas phase, formaldehyde has an electric-dipole forbidden transition that becomes allowed by vibronic coupling. In this paper we explore whether perturbation by surfaces could also enhance light absorption by CH2O. We investigate the electronic transitions of formaldehyde in the gas phase and interacting with rutile (110) TiO2, Aun nanoclusters, and Aun on (110)-TiO2. These surfaces are chosen as being representative of metals and metal-oxide minerals, and also because of specific interest in photocatalysts and noble metal nanocluster catalysts. The oscillator strength of the forbidden n → π* transition of formaldehyde in vacuum is investigated by modelling vibrational coupling to the electronic transition with equation-of-motion coupled cluster theory. The excitation energies and oscillator strengths of formaldehyde are calculated for different orientations and distances to the surfaces using the coupled cluster singles and doubles linear response method within the Quantum Mechanical and Molecular Mechanical (QM/MM) model using the aug-cc-pVTZ basis set and compared with the values calculated in vacuo. The electronic transitions of formaldehyde vary very little when placed near a pure TiO2-surface with only minor variations depending on the orientation of formaldehyde. Introducing a gold nanoparticle (by itself or supported by TiO2) induces dramatic changes in the absorption properties. This is due to vibronic interactions and the effect of the broken symmetry on the n → π* transition. We see a large redshift in the transition of 90 nm and oscillator strengths larger than 1.0 × 10-4 for CH2O interacting with Aun.

17.
Phys Chem Chem Phys ; 24(9): 5506-5521, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35171973

RESUMEN

In this paper, we present an investigation concerning the prospects of using nanoparticles to improve solar energy storage properties of three different norbornadiene/quadricyclane derivatives. Computationally, we study how different nanoparticles influence the properties of the systems that relate to the storage of solar energy, namely, the storage energy and the back reaction barrier. Our approach employs hybrid quantum mechanical/molecular mechanical calculations in which the molecular systems are described using density functional theory while the nanoparticles are described using molecular mechanics. The interactions between the two subsystems are determined using polarization dynamics. The results show that the influence of the nanoparticles on the thermochemical properties largely depends on the type of nanoparticle used, the relative orientation with respect to the nanoparticle, and the distance between the the nanoparticle and the molecular system. Additionally, we find indications that copper and/or titanium dioxide nanoparticles can lower the energy barrier of the back reaction for all of the studied systems without significantly lowering the storage capability of the systems. Consequently, the study shows that nanoparticles can potentially be employed in the optimization of molecular photoswitches towards solar energy storage.

18.
Phys Chem Chem Phys ; 24(47): 28934-28943, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36416446

RESUMEN

Herein, we present an investigation of the excited state dynamics of the dihydroazulene photoswitch and its photoinduced reaction to vinylheptafulvene. The focus is on how the introduction of a benzannulated ring in different sites of the structure can modify the excited state topology and thus the kinetics of the ring opening reaction of DHA by alteration of the excited state conjugation of the system. The dynamics of the systems is obtained utilizing ab initio density functional theory calculations in different solvents coupled with unimolecular reaction theory. To accompany these results, the electron delocalization is investigated using the quantum theory of atoms in molecules partitioning to follow the trends induced by the benzannulated ring. It is observed that the introduction of a benzannulated ring can both enhance and diminish the rate of the photoinduced ring opening of dihydroazulene and that certain patterns of conjugation are consistent with the rate constants. Lastly, we find good agreement with earlier experimental studies indicating that the chosen approach could be used to predict whether photochromic systems lose their photoswitchability upon being optimized for specific applications via functionalization.

19.
Phys Chem Chem Phys ; 24(47): 28956-28964, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36416497

RESUMEN

We present a procedure for performing high throughput screening of molecular compounds for molecular solar thermal energy storage devices using extended tight binding (xTB) methods. In order to validate our approach, we performed screening of 3230 norbornadiene/quadricyclane (NBD/QC) derivatives in terms of storage energies, activation barriers and absorption of solar radiation using our approach, and compared it to high level density functional theory (DFT) and cluster perturbation (CP) theory calculations. Our comparisons show that the xTB screening framework correlates very well with DFT and CP theory in that it predicts the same relative trends in the studied parameters although the storage energies and thermal reaction barriers are significantly offset. Utilizing the screening methodology, we have been able to locate compounds that would either be excellent candidates or compounds that should not be considered further for molecular solar thermal energy storage devices. This methodology can readily be extended and applied to screening other molecular motifs for molecular solar energy storage.

20.
Phys Chem Chem Phys ; 24(9): 5564-5577, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35174838

RESUMEN

Solvent effects on molecular solar thermal energy storage systems have been investigated using density functional theory combined with solvent models describing the effects of viscosities and dielectric constants on chemical reaction rates. We have addressed the following issues concerning how solvents influence both the thermochemical properties and the thermal relaxation kinetics of the studied systems, how the friction of the solvent influences the recrossing of the reactions along with the dynamics and force constants of the transition state. We observe that the rate constants for the chemical reactions of the molecular solar thermal energy storage systems depend strongly on the dielectric solvent properties and the viscosities of the solvents.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA