Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Microb Cell Fact ; 15(1): 207, 2016 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-27923373

RESUMEN

BACKGROUND: The glucosyltransferase UGT76G1 from Stevia rebaudiana is a chameleon enzyme in the targeted biosynthesis of the next-generation premium stevia sweeteners, rebaudioside D (Reb D) and rebaudioside M (Reb M). These steviol glucosides carry five and six glucose units, respectively, and have low sweetness thresholds, high maximum sweet intensities and exhibit a greatly reduced lingering bitter taste compared to stevioside and rebaudioside A, the most abundant steviol glucosides in the leaves of Stevia rebaudiana. RESULTS: In the metabolic glycosylation grid leading to production of Reb D and Reb M, UGT76G1 was found to catalyze eight different reactions all involving 1,3-glucosylation of steviol C 13- and C 19-bound glucoses. Four of these reactions lead to Reb D and Reb M while the other four result in formation of side-products unwanted for production. In this work, side-product formation was reduced by targeted optimization of UGT76G1 towards 1,3 glucosylation of steviol glucosides that are already 1,2-diglucosylated. The optimization of UGT76G1 was based on homology modelling, which enabled identification of key target amino acids present in the substrate-binding pocket. These residues were then subjected to site-saturation mutagenesis and a mutant library containing a total of 1748 UGT76G1 variants was screened for increased accumulation of Reb D or M, as well as for decreased accumulation of side-products. This screen was performed in a Saccharomyces cerevisiae strain expressing all enzymes in the rebaudioside biosynthesis pathway except for UGT76G1. CONCLUSIONS: Screening of the mutant library identified mutations with positive impact on the accumulation of Reb D and Reb M. The effect of the introduced mutations on other reactions in the metabolic grid was characterized. This screen made it possible to identify variants, such as UGT76G1Thr146Gly and UGT76G1His155Leu, which diminished accumulation of unwanted side-products and gave increased specific accumulation of the desired Reb D or Reb M sweeteners. This improvement in a key enzyme of the Stevia sweetener biosynthesis pathway represents a significant step towards the commercial production of next-generation stevia sweeteners.


Asunto(s)
Diterpenos de Tipo Kaurano/biosíntesis , Glucósidos/biosíntesis , Stevia/metabolismo , Edulcorantes/metabolismo , Secuencia de Aminoácidos , Diterpenos de Tipo Kaurano/metabolismo , Glucósidos/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Stevia/química , Stevia/enzimología , Stevia/genética , Edulcorantes/química
2.
Plant Cell ; 23(2): 716-29, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21317374

RESUMEN

Indole glucosinolates, derived from the amino acid Trp, are plant secondary metabolites that mediate numerous biological interactions between cruciferous plants and their natural enemies, such as herbivorous insects, pathogens, and other pests. While the genes and enzymes involved in the Arabidopsis thaliana core biosynthetic pathway, leading to indol-3-yl-methyl glucosinolate (I3M), have been identified and characterized, the genes and gene products responsible for modification reactions of the indole ring are largely unknown. Here, we combine the analysis of Arabidopsis mutant lines with a bioengineering approach to clarify which genes are involved in the remaining biosynthetic steps in indole glucosinolate modification. We engineered the indole glucosinolate biosynthesis pathway into Nicotiana benthamiana, showing that it is possible to produce indole glucosinolates in a noncruciferous plant. Building upon this setup, we demonstrate that all members of a small gene subfamily of cytochrome P450 monooxygenases, CYP81Fs, are capable of carrying out hydroxylation reactions of the glucosinolate indole ring, leading from I3M to 4-hydroxy-indol-3-yl-methyl and/or 1-hydroxy-indol-3-yl-methyl glucosinolate intermediates, and that these hydroxy intermediates are converted to 4-methoxy-indol-3-yl-methyl and 1-methoxy-indol-3-yl-methyl glucosinolates by either of two family 2 O-methyltransferases, termed indole glucosinolate methyltransferase 1 (IGMT1) and IGMT2.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Glucosinolatos/biosíntesis , Indoles/metabolismo , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Línea Celular , Sistema Enzimático del Citocromo P-450/genética , ADN Bacteriano/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Mutagénesis Insercional , Mutación , Spodoptera/citología , Nicotiana/genética , Nicotiana/metabolismo
3.
Metab Eng ; 14(2): 104-11, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22326477

RESUMEN

Epidemiological studies have shown that consumption of cruciferous vegetables, such as, broccoli and cabbages, is associated with a reduced risk of developing cancer. This phenomenon has been attributed to specific glucosinolates among the ~30 glucosinolates that are typically present as natural products characteristic of cruciferous plants. Accordingly, there has been a strong interest to produce these compounds in microbial cell factories as it will allow production of selected beneficial glucosinolates. We have developed a versatile platform for stable expression of multi-gene pathways in the yeast, Saccharomyces cerevisiae. Introduction of the seven-step pathway of indolylglucosinolate from Arabidopsis thaliana to yeast resulted in the first successful production of glucosinolates in a microbial host. The production of indolylglucosinolate was further optimized by substituting supporting endogenous yeast activities with plant-derived enzymes. Production of indolylglucosinolate serves as a proof-of-concept for our expression platform, and provides a basis for large-scale microbial production of specific glucosinolates for the benefit of human health.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/enzimología , Glucosinolatos/biosíntesis , Ingeniería Metabólica , Saccharomyces cerevisiae/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/química , Glucosinolatos/química , Humanos , Neoplasias/epidemiología , Neoplasias/prevención & control , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética
4.
Planta ; 229(6): 1209-17, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19263076

RESUMEN

Indole-3-acetaldoxime (IAOx) is a key branching point between primary and secondary metabolism. IAOx serves as an intermediate in the biosynthesis of indole glucosinolates (I-GLSs), camalexin and the plant hormone indole-3-acetic acid (IAA). The cytochrome P450s CYP79B2 and CYP79B3 catalyze the conversion of tryptophan to IAOx. CYP83B1 channels IAOx into I-GLS biosynthesis, CYP71A13 channels IAOx into camalexin biosynthesis, whereas the IAOx-metabolizing enzyme in IAA biosynthesis is not known. In this report, we demonstrate controlled production of I-GLSs by introducing an ethanol (EtOH)-inducible CYP79B2 construct into double (cyp79b2 cyp79b3) or triple (cyp79b2 cyp79b3 cyp83b1) mutant lines. We show EtOH-dependent induction of camalexin and identify a number of candidate IAA homeostasis- or defense-related genes by clustered microarray analysis. The transgenic mutant lines are thus promising tools for elucidating the interplay between primary and secondary metabolism.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Etanol/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Indoles/metabolismo , Oximas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Vías Biosintéticas , Cromatografía Liquida , Análisis por Conglomerados , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucosinolatos/química , Glucosinolatos/metabolismo , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Indoles/química , Espectrometría de Masas , Estructura Molecular , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Oximas/química , Plantas Modificadas Genéticamente , Tiazoles/química , Tiazoles/metabolismo
5.
Mol Plant ; 3(4): 751-9, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20457641

RESUMEN

Epidemiological studies have demonstrated reduced risk of developing cancer upon consumption of diets rich in cruciferous vegetables. This chemoprevention has been largely attributed to the presence of the natural products glucosinolates, particularly the methionine-derived glucoraphanin from broccoli. Improved nutrition by functional foods or health-promoting dietary supplements is an attractive means for prevention of lifestyle-based diseases. Towards this goal, we have engineered the glucoraphanin pathway into tobacco. First, we engineered elongation of the side chain of methionine to produce the key intermediate dihomo-methionine. This process is catalyzed through two cycles in a chain-elongation pathway that takes place partly in the cytosol and partly in the chloroplast. Second, by coupling the five enzymes of the chain-elongation pathway to eight enzymes of the glucosinolate pathway, we show production of glucoraphanin together with other glucosinolates derived from chain-elongated isoleucine and/or leucine. The conversion of methionine to glucoraphanin is obtained via 14 intermediates. Demonstrating the production of the high-value glucoraphanin in a heterologous host has great potential in the food and medicinal industry as a means to generate a stable, rich source of glucoraphanin for the benefit of human health.


Asunto(s)
Glucosinolatos/biosíntesis , Glucosinolatos/uso terapéutico , Imidoésteres/uso terapéutico , Neoplasias/prevención & control , Nicotiana/química , Oximas , Sulfóxidos
6.
Plant J ; 46(5): 758-67, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16709192

RESUMEN

Plant diseases are major contributing factors for crop loss in agriculture. Here, we show that Arabidopsis plants with high levels of novel glucosinolates (GSs) as a result of the introduction of single CYP79 genes exhibit altered disease resistance. Arabidopsis expressing CYP79D2 from cassava accumulated aliphatic isopropyl and methylpropyl GS, and showed enhanced resistance against the bacterial soft-rot pathogen Erwinia carotovora, whereas Arabidopsis expressing the sorghum CYP79A1 or over-expressing the endogenous CYP79A2 accumulated p-hydroxybenzyl or benzyl GS, respectively, and showed increased resistance towards the bacterial pathogen Pseudomonas syringae. In addition to the direct toxic effects of GS breakdown products, increased accumulation of aromatic GSs was shown to stimulate salicylic acid-mediated defenses while suppressing jasmonate-dependent defenses, as manifested in enhanced susceptibility to the fungus Alternaria brassicicola. Arabidopsis with modified GS profiles provide important tools for evaluating the biological effects of individual GSs and thereby show potential as biotechnological tools for the generation of plants with tailor-made disease resistance.


Asunto(s)
Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/fisiología , Glucosinolatos/metabolismo , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/fisiología , Alternaria/fisiología , Arabidopsis/microbiología , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Glucosinolatos/química , Inmunidad Innata , Pectobacterium carotovorum/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/fisiología , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Pseudomonas syringae/fisiología , Transducción de Señal/fisiología , Transgenes
7.
Plant Physiol ; 131(2): 773-9, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12586901

RESUMEN

Glucosinolates are amino acid-derived natural products that, upon hydrolysis, typically release isothiocyanates with a wide range of biological activities. Glucosinolates play a role in plant defense as attractants and deterrents against herbivores and pathogens. A key step in glucosinolate biosynthesis is the conversion of amino acids to the corresponding aldoximes, which is catalyzed by cytochromes P450 belonging to the CYP79 family. Expression of CYP79D2 from cassava (Manihot esculenta Crantz.) in Arabidopsis resulted in the production of valine (Val)- and isoleucine-derived glucosinolates not normally found in this ecotype. The transgenic lines showed no morphological phenotype, and the level of endogenous glucosinolates was not affected. The novel glucosinolates were shown to constitute up to 35% of the total glucosinolate content in mature rosette leaves and up to 48% in old leaves. Furthermore, at increased concentrations of these glucosinolates, the proportion of Val-derived glucosinolates decreased. As the isothiocyanates produced from the Val- and isoleucine-derived glucosinolates are volatile, metabolically engineered plants producing these glucosinolates have acquired novel properties with great potential for improvement of resistance to herbivorous insects and for biofumigation.


Asunto(s)
Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Glucosinolatos/metabolismo , Isoleucina/metabolismo , Manihot/genética , Valina/metabolismo , Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Regulación de la Expresión Génica de las Plantas , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Manihot/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente
8.
Plant J ; 37(5): 770-7, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-14871316

RESUMEN

We report characterization of SUPERROOT1 (SUR1) as the C-S lyase in glucosinolate biosynthesis. This is evidenced by selective metabolite profiling of sur1, which is completely devoid of aliphatic and indole glucosinolates. Furthermore, following in vivo feeding with radiolabeled p-hydroxyphenylacetaldoxime to the sur1 mutant, the corresponding C-S lyase substrate accumulated. C-S lyase activity of recombinant SUR1 heterologously expressed in Escherichia coli was demonstrated using the C-S lyase substrate djenkolic acid. The abolishment of glucosinolates in sur1 indicates that the SUR1 function is not redundant and thus SUR1 constitutes a single gene family. This suggests that the "high-auxin" phenotype of sur1 is caused by accumulation of endogenous C-S lyase substrates as well as aldoximes, including indole-3-acetaldoxime (IAOx) that is channeled into the main auxin indole-3-acetic acid (IAA). Thereby, the cause of the "high-auxin" phenotype of sur1 mutant resembles that of two other "high-auxin" mutants, superroot2 (sur2) and yucca1. Our findings provide important insight to the critical role IAOx plays in auxin homeostasis as a key branching point between primary and secondary metabolism, and define a framework for further dissection of auxin biosynthesis.


Asunto(s)
Arabidopsis/enzimología , Glucosinolatos/biosíntesis , Ácidos Indolacéticos/fisiología , Indoles/metabolismo , Liasas/metabolismo , Oximas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/biosíntesis , Liasas/genética , Familia de Multigenes , Mutación
9.
Plant Physiol ; 135(2): 840-8, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15194821

RESUMEN

A significant fraction (approximately 17%) of Arabidopsis genes are members of tandemly repeated families and pose a particular challenge for functional studies. We have used the Ac-Ds transposition system to generate single- and double-knockout mutants of two tandemly duplicated cytochrome P450 genes, SPS/BUS/CYP79F1 and CYP79F2. We have previously described the Arabidopsis supershoot mutants in CYP79F1 that exhibit massive overproliferation of shoots. Here we use a cytokinin-responsive reporter ARR5::uidA and an auxin-responsive reporter DR5::uidA in the sps/cyp79F1 mutant to show that increased levels of cytokinin, but not auxin, correlate well with the expression pattern of the SPS/CYP79F1 gene, supporting the involvement of this gene in cytokinin homeostasis. Further, we isolated Ds gene trap insertions in the CYP79F2 gene, and find these mutants to be defective mainly in the root system, consistent with a root-specific expression pattern. Finally, we generated double mutants in CYP79F1 and CYP79F2 using secondary transpositions, and demonstrate that the phenotypes are additive. Previous biochemical studies have suggested partially redundant functions for SPS/CYP79F1 and CYP79F2 in aliphatic glucosinolate synthesis. Our analysis shows that aliphatic glucosinolate biosynthesis is completely abolished in the double-knockout plants, providing genetic proof for the proposed biochemical functions of these genes. This study also provides further demonstration of how gluconisolate biosynthesis, regarded as secondary metabolism, is intricately linked with hormone homeostatis and hence with plant growth and development.


Asunto(s)
Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Elementos Transponibles de ADN/genética , Glucosinolatos/biosíntesis , Oxigenasas de Función Mixta/genética , Secuencias Repetidas en Tándem/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Citocininas/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Oxigenasas de Función Mixta/metabolismo , Mutación , Fenotipo , Reguladores del Crecimiento de las Plantas/farmacología
10.
Plant Physiol ; 131(1): 298-308, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12529537

RESUMEN

Glucosinolates are natural plant products that function in the defense toward herbivores and pathogens. Plant defense is regulated by multiple signal transduction pathways in which salicylic acid (SA), jasmonic acid, and ethylene function as signaling molecules. Glucosinolate content was analyzed in Arabidopsis wild-type plants in response to single or combinatorial treatments with methyljasmonate (MeJA), 2,6-dichloro-isonicotinic acid, ethylene, and 2,4-dichloro-phenoxyacetic acid, or by wounding. In addition, several signal transduction mutants and the SA-depleted transgenic NahG line were analyzed. In parallel, expression of glucosinolate biosynthetic genes of the CYP79 gene family and the UDPG:thiohydroximate glucosyltransferase was monitored. After MeJA treatment, the amount of indole glucosinolates increased 3- to 4-fold, and the corresponding Trp-metabolizing genes CYP79B2 and CYP79B3 were both highly induced. Specifically, the indole glucosinolate N-methoxy-indol-3-ylmethylglucosinolate accumulated 10-fold in response to MeJA treatment, whereas 4-methoxy-indol-3-ylmethylglucosinolate accumulated 1.5-fold in response to 2,6-dichloro-isonicotinic acid. In general, few changes were seen for the levels of aliphatic glucosinolates, although increases in the levels of 8-methylthiooctyl glucosinolate and 8-methylsulfinyloctyl glucosinolate were observed, particularly after MeJA treatments. The findings were supported by the composition of glucosinolates in the coronatine-insensitive mutant coi1, the ctr1 mutant displaying constitutive triple response, and the SA-overproducing mpk4 and cpr1 mutants. The present data indicate that different indole glucosinolate methoxylating enzymes are induced by the jasmonate and the SA signal transduction pathways, whereas the aliphatic glucosinolates appear to be primarily genetically and not environmentally controlled. Thus, different defense pathways activate subsets of biosynthetic enzymes, leading to the accumulation of specific glucosinolates.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Glucosinolatos/metabolismo , Oxigenasas de Función Mixta/genética , Transducción de Señal/genética , Ácido 2,4-Diclorofenoxiacético/farmacología , Acetatos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo , Etilenos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Inmunidad Innata , Ácidos Indolacéticos/farmacología , Isoenzimas/genética , Isoenzimas/metabolismo , Ácidos Isonicotínicos/farmacología , Oxigenasas de Función Mixta/metabolismo , Oxilipinas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Estrés Mecánico
11.
Plant Physiol ; 133(1): 63-72, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12970475

RESUMEN

In the glucosinolate pathway, the postoxime enzymes have been proposed to have low specificity for the side chain and high specificity for the functional group. Here, we provide biochemical evidence for the functional role of the two cytochromes P450, CYP83A1 and CYP83B1, from Arabidopsis in oxime metabolism in the biosynthesis of glucosinolates. In a detailed analysis of the substrate specificities of the recombinant enzymes heterologously expressed in yeast (Saccharomyces cerevisiae), we show that aliphatic oximes derived from chain-elongated homologs of methionine are efficiently metabolized by CYP83A1, whereas CYP83B1 metabolizes these substrates with very low efficiency. Aromatic oximes derived from phenylalanine, tryptophan, and tyrosine are metabolized by both enzymes, although CYP83B1 has higher affinity for these substrates than CYP83A1, particularly in the case of indole-3-acetaldoxime, where there is a 50-fold difference in K(m) value. The data show that CYP83A1 and CYP83B1 are nonredundant enzymes under physiologically normal conditions in the plant. The ability of CYP83A1 to metabolize aromatic oximes, albeit at small levels, explains the presence of indole glucosinolates at various levels in different developmental stages of the CYP83B1 knockout mutant, rnt1-1. Plants overexpressing CYP83B1 contain elevated levels of aliphatic glucosinolates derived from methionine homologs, whereas the level of indole glucosinolates is almost constant in the overexpressing lines. Together with the previous characterization of the members of the CYP79 family involved in oxime production, this work provides a framework for metabolic engineering of glucosinolates and for further dissection of the glucosinolate pathway.


Asunto(s)
Arabidopsis/enzimología , Sistema Enzimático del Citocromo P-450/metabolismo , Glucosinolatos/biosíntesis , Oxigenasas de Función Mixta/metabolismo , Oximas/metabolismo , Oxigenasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Sistema Enzimático del Citocromo P-450/genética , Oxigenasas de Función Mixta/genética , Mutación , Oxigenasas/genética , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA