Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ecol ; 30(5): 1206-1222, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33465828

RESUMEN

Facultative clonality is associated with complex life cycles where sexual and asexual forms can be exposed to contrasting selection pressures. Facultatively clonal animals often have distinct developmental capabilities that depend on reproductive mode (e.g., negligible senescence and exceptional regeneration ability in asexual individuals, which are lacking in sexual individuals). Understanding how these differences in life history strategies evolved is hampered by limited knowledge of the population structure underlying sexual and asexual forms in nature. Here we studied genetic differentiation of coexisting sexual and asexual Hydra oligactis polyps, a freshwater cnidarian where reproductive mode-dependent life history patterns are observed. We collected asexual and sexual polyps from 13 Central European water bodies and used restriction-site associated DNA sequencing to infer population structure. We detected high relatedness among populations and signs that hydras might spread with resting eggs through zoochory. We found no genetic structure with respect to mode of reproduction (asexual vs. sexual). On the other hand, clear evidence was found for phenotypic plasticity in mode of reproduction, as polyps inferred to be clones differed in reproductive mode. Moreover, we detected two cases of apparent sex change (males and females found within the same clonal lineages) in this species with supposedly stable sexes. Our study describes population genetic structure in Hydra for the first time, highlights the role of phenotypic plasticity in generating patterns of life history variation, and contributes to understanding the evolution of reproductive mode-dependent life history variation in coexisting asexual and sexual forms.


Asunto(s)
Hydra , Adaptación Fisiológica , Animales , Femenino , Genotipo , Hydra/genética , Estadios del Ciclo de Vida , Masculino , Reproducción/genética , Reproducción Asexuada/genética
2.
J Anim Ecol ; 89(10): 2246-2257, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32596821

RESUMEN

Asexual reproduction diversifies life-history priorities and is associated with unusual reproduction and somatic maintenance patterns, such as constant fertility with age, extensive regeneration ability and negligible senescence. While age-dependent plasticity in relative allocation to sexual versus asexual reproductive modes is relatively well studied, the modulation of somatic maintenance traits in parallel with age-dependent reproduction is much less well understood in clonal or partially clonal animals. Here, we asked how age-dependent investment into sexual and asexual reproduction co-varies with somatic maintenance such as regeneration in a partially clonal freshwater cnidarian Hydra oligactis, a species with remarkable regeneration abilities and experimentally inducible sex. We induced gametogenesis by lowering temperature at two ages, 1 or 4 weeks after detachment from an asexual parent, in animals of a male and a female clone. Then we measured phenotypically asexual and sexual reproductive traits (budding rate, start day and number of sexual organs) together with head regeneration rate, survival and the cellular background of these traits (number of reproductive and interstitial stem cells) for 2 or 5 months. Younger animals had higher asexual reproduction while individuals in the older group had more intensive gametogenesis and reproductive cell production. In parallel with these age-dependent reproductive differences, somatic maintenance of older individuals was also impacted: head regeneration, survival and interstitial stem cell numbers were reduced compared to younger polyps. Some of the traits investigated showed an ontogenetic effect, suggesting that age-dependent plasticity and a fixed ontogenetic response might both contribute to differences between age groups. We show that in H. oligactis asexual reproduction coupled with higher somatic maintenance is prioritized earlier in life, while sexual reproduction with higher maintenance costs occurs later if sex is induced. These findings confirm general life-history theory predictions on resource allocation between somatic maintenance and sexual reproduction applying in a partially clonal species. At the same time, our study also highlights the age-dependent integration of these resource allocation decisions with sexual/asexual strategies. Accounting for age-related differences might enhance repeatability of research done with clonal individuals derived from mass cultures.


Asunto(s)
Hydra , Animales , Femenino , Fertilidad , Masculino , Fenotipo , Reproducción , Reproducción Asexuada
3.
Front Microbiol ; 14: 1294771, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38088971

RESUMEN

Multicellular organisms engage in complex ecological interactions with microorganisms, some of which are harmful to the host's health and fitness (e.g., pathogens or toxin-producing environmental microbiota), while others are either beneficial or have a neutral impact (as seen in components of host-associated microbiota). Although environmental microorganisms are generally considered to have no significant impact on animal fitness, there is evidence suggesting that exposure to these microbes might be required for proper immune maturation and research in vertebrates has shown that developing in a sterile environment detrimentally impacts health later in life. However, it remains uncertain whether such beneficial effects of environmental microorganisms are present in invertebrates that lack an adaptive immune system. In the present study, we conducted an experiment with field-collected Hydra oligactis, a cold-adapted freshwater cnidarian. We cultured these organisms in normal and autoclaved lake water at two distinct temperatures: 8°C and 12°C. Our findings indicated that polyps maintained in sterilized lake water displayed reduced population growth that depended on temperature, such that the effect was only present on 8°C. To better understand the dynamics of microbial communities both inhabiting polyps and their surrounding environment we conducted 16S sequencing before and after treatment, analyzing samples from both the polyps and the water. As a result of culturing in autoclaved lake water, the polyps showed a slightly altered microbiota composition, with some microbial lineages showing significant reduction in abundance, while only a few displayed increased abundances. The autoclaved lake water was recolonized, likely from the surface of hydra polyps, by a complex albeit different community of bacteria, some of which (such as Pseudomonas, Flavobacteriaceae) might be pathogenic to hydra. The abundance of the intracellular symbiont Polynucleobacter was positively related to hydra population size. These findings indicate that at low temperature environmental microbiota can enhance population growth rate in hydra, suggesting that environmental microorganisms can provide benefits to animals even in the absence of an adaptive immune system.

4.
Front Microbiol ; 13: 799333, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308397

RESUMEN

Most animals co-exist with diverse host-associated microbial organisms that often form complex communities varying between individuals, habitats, species and higher taxonomic levels. Factors driving variation in the diversity of host-associated microbes are complex and still poorly understood. Here, we describe the bacterial composition of field-collected Hydra, a freshwater cnidarian that forms stable associations with microbial species in the laboratory and displays complex interactions with components of the microbiota. We sampled Hydra polyps from 21 Central European water bodies and identified bacterial taxa through 16S rRNA sequencing. We asked whether diversity and taxonomic composition of host-associated bacteria depends on sampling location, habitat type, host species or host reproductive mode (sexual vs. asexual). Bacterial diversity was most strongly explained by sampling location, suggesting that the source environment plays an important role in the assembly of bacterial communities associated with Hydra polyps. We also found significant differences between host species in their bacterial composition that partly mirrored variations observed in lab strains. Furthermore, we detected a minor effect of host reproductive mode on bacterial diversity. Overall, our results suggest that extrinsic (habitat identity) factors predict the diversity of host-associated bacterial communities more strongly than intrinsic (species identity) factors, however, only a combination of both factors determines microbiota composition in Hydra.

5.
Ecol Evol ; 12(7): e9096, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35845371

RESUMEN

Facultative sexual organisms combine sexual and asexual reproduction within a single life cycle, often switching between reproductive modes depending on environmental conditions. These organisms frequently inhabit variable seasonal environments, where favorable periods alternate with unfavorable periods, generating temporally varying selection pressures that strongly influence life history decisions and hence population dynamics. Due to the rapidly accelerating changes in our global environment today, understanding the population dynamics and genetic changes in facultative sexual populations inhabiting seasonal environments is critical to assess and prepare for additional challenges that will affect such ecosystems. In this study, we aimed at obtaining insights into the seasonal population dynamics of the facultative sexual freshwater cnidarian Hydra oligactis through a combination of restriction site-associated sequencing (RAD-Seq) genotyping and the collection of phenotypic data on the reproductive strategy of field-collected hydra strains in a standard laboratory environment. We reliably detected 42 MlGs from the 121 collected hydra strains. Most of MLGs (N = 35, 83.3%) were detected in only one season. Five MLGs (11.9%) were detected in two seasons, one (2.4%) in three seasons and one (2.4%) in all four seasons. We found no significant genetic change during the 2 years in the study population. Clone lines were detected between seasons and even years, suggesting that clonal lineages can persist for a long time in a natural population. We also found that distinct genotypes differ in sexual reproduction frequency, but these differences did not affect whether genotypes reappeared across samplings. Our study provides key insights into the biology of natural hydra populations, while also contributing to understanding the population biology of facultative sexual species inhabiting freshwater ecosystems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA