Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 33(4): e17243, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38108507

RESUMEN

Disentangling the effects of ecological disruptions operating at different spatial and temporal scales in shaping past species' demography is particularly important in the current context of rapid environmental changes driven by both local and regional factors. We argue that volcanic oceanic islands provide useful settings to study the influence of past ecological disruptions operating at local and regional scales on population demographic histories. We investigate potential drivers of past population dynamics for three closely related species of passerine birds from two volcanic oceanic islands, Reunion and Mauritius (Mascarene archipelago), with distinct volcanic history. Using ABC and PSMC inferences from complete genomes, we reconstructed the demographic history of the Reunion Grey White-eye (Zosterops borbonicus (Pennant, 1781)), the Reunion Olive White-eye (Z. olivaceus (Linnaeus, 1766)) and the Mauritius Grey White-eye (Z. mauritianus (Gmelin, 1789)) and searched for possible causes underlying similarities or differences between species living on the same or different islands. Both demographic inferences strongly support ancient and long-term expansions in all species. They also reveal different trajectories between species inhabiting different islands, but consistent demographic trajectories in species or populations from the same island. Species from Reunion appear to have experienced synchronous reductions in population size during the Last Glacial Maximum, a trend not seen in the Mauritian species. Overall, this study suggests that local events may have played a role in shaping population trajectories of these island species. It also highlights the potential of our conceptual framework to disentangle the effects of local and regional drivers on past species' demography and long-term population processes.


Asunto(s)
Dinámica Poblacional , Océanos y Mares , Reunión , Mauricio
2.
J Evol Biol ; 36(1): 82-94, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36484624

RESUMEN

Categorizing individuals into discrete forms in colour polymorphic species can overlook more subtle patterns in coloration that can be of functional significance. Thus, quantifying inter-individual variation in these species at both within- and between-morph levels is critical to understand the evolution of colour polymorphisms. Here we present analyses of inter-individual colour variation in the Reunion grey white-eye (Zosterops borbonicus), a colour polymorphic wild bird endemic to the island of Reunion in which all highland populations contain two sympatric colour morphs, with birds showing predominantly grey or brown plumage, respectively. We first quantified colour variation across multiple body areas by using a continuous plumage colour score to assess variation in brown-grey coloration as well as smaller scale variation in light patches. To examine the possible causes of among-individual variation, we tested if colour variation in plumage component elements could be explained by genotypes at two markers near a major-effect locus previously related to back coloration in this species, and by other factors such as age, sex and body condition. Overall, grey-brown coloration was largely determined by genetic factors and was best described by three distinct clusters that were associated to genotypic classes (homozygotes and heterozygote), with no effect of age or sex, whereas variation in smaller light patches was primarily related to age and sex. Our results highlight the importance of characterizing subtle plumage variation beyond morph categories that are readily observable since multiple patterns of colour variation may be driven by different mechanisms, have different functions and will likely respond in different ways to selection.


Asunto(s)
Determinismo Genético , Passeriformes , Humanos , Animales , Color , Pigmentación/genética , Polimorfismo Genético , Passeriformes/genética
3.
J Evol Biol ; 36(9): 1226-1241, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37485603

RESUMEN

According to models of ecological speciation, adaptation to adjacent, contrasting habitat types can lead to population divergence given strong enough environment-driven selection to counteract the homogenizing effect of gene flow. We tested this hypothesis in the common chaffinch (Fringilla coelebs) on the small island of La Palma, Canary Islands, where it occupies two markedly different habitats. Isotopic (δ13 C, δ15 N) analysis of feathers indicated that birds in the two habitats differed in ecosystem and/or diet, and analysis of phenotypic traits revealed significant differences in morphology and plumage colouration that are consistent with ecomorphological and ecogeographical predictions respectively. A genome-wide survey of single-nucleotide polymorphism revealed marked neutral structure that was consistent with geography and isolation by distance, suggesting low dispersal. In contrast, loci putatively under selection identified through genome-wide association and genotype-environment association analyses, revealed amarked adaptive divergence between birds in both habitats. Loci associated with phenotypic and environmental differences among habitats were distributed across the genome, as expected for polygenic traits involved in local adaptation. Our results suggest a strong role for habitat-driven local adaptation in population divergence in the chaffinches of La Palma, a process that appears to be facilitated by a strong reduction in effective dispersal distances despite the birds' high dispersal capacity.


Asunto(s)
Pinzones , Genética de Población , Animales , Ecosistema , Estudio de Asociación del Genoma Completo , Flujo Génico , Genómica
4.
Mol Ecol ; 31(9): 2625-2643, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35253305

RESUMEN

Colonization of a novel environment by a few individuals can lead to rapid evolutionary change, yet there is scarce evidence of the relative contributions of neutral and selective factors in promoting divergence during the early stages of colonization. Here we explore the role of neutral and selective forces in the divergence of a unique urban population of the dark-eyed junco (Junco hyemalis), which became established on the campus of the University of California at San Diego (UCSD) in the early 1980s. Previous studies based on microsatellite loci documented significant genetic differentiation of the urban population as well as divergence in phenotypic traits relative to nearby montane populations, yet the geographical origin of the colonization and the contributing factors remained uncertain. Our genome-wide single nucleotide polymorphism data set confirmed the marked genetic differentiation of the UCSD population, and we identified the coastal subspecies pinosus from central California as its sister group instead of the neighbouring mountain population. Demographic inference recovered a separation from pinosus as recent as 20-32 generations ago after a strong bottleneck, suggesting a role for drift in genetic differentiation. However, we also found significant associations between habitat variables and genome-wide variants linked to functional genes, some of which have been reported as potentially adaptive in birds inhabiting modified environments. These results suggest that the interplay between founder events and selection may result in rapid shifts in neutral and adaptive loci across the genome, and reveal the UCSD junco population as a case of contemporary evolutionary divergence in an anthropogenic environment.


Asunto(s)
Passeriformes , Pájaros Cantores , Animales , Evolución Biológica , Flujo Genético , Genética de Población , Fenotipo , Pájaros Cantores/genética
5.
Mol Phylogenet Evol ; 164: 107291, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34384903

RESUMEN

Oceanic archipelagos are excellent systems for studying speciation, yet inference of evolutionary process requires that the colonization history of island organisms be known with accuracy. Here, we used phylogenomics and patterns of genetic diversity to infer the sequence and timing of colonization of Macaronesia by mainland common chaffinches (Fringilla coelebs), and assessed whether colonization of the different archipelagos has resulted in a species-level radiation. To reconstruct the evolutionary history of the complex we generated a molecular phylogeny based on genome-wide SNP loci obtained from genotyping-by-sequencing, we ran ancestral range biogeographic analyses, and assessed fine-scale genetic structure between and within archipelagos using admixture analysis. To test for a species-level radiation, we applied a probabilistic tree-based species delimitation method (mPTP) and an integrative taxonomy approach including phenotypic differences. Results revealed a circuitous colonization pathway in Macaronesia, from the mainland to the Azores, followed by Madeira, and finally the Canary Islands. The Azores showed surprisingly high genetic diversity, similar to that found on the mainland, and the other archipelagos showed the expected sequential loss of genetic diversity. Species delimitation methods supported the existence of several species within the complex. We conclude that the common chaffinch underwent a rapid radiation across Macaronesia that was driven by the sequential colonization of the different archipelagos, resulting in phenotypically and genetically distinct, independent evolutionary lineages. We recommend a taxonomic revision of the complex that takes into account its genetic and phenotypic diversity.


Asunto(s)
Evolución Biológica , Aves , Animales , Aves/genética , Genoma , Filogenia , Portugal
6.
Proc Biol Sci ; 287(1923): 20192999, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32183633

RESUMEN

The presence of congeneric taxa on the same island suggests the possibility of in situ divergence, but can also result from multiple colonizations of previously diverged lineages. Here, using genome-wide data from a large population sample, we test the hypothesis that intra-island divergence explains the occurrence of four geographical forms meeting at hybrid zones in the Reunion grey white-eye (Zosterops borbonicus), a species complex endemic to the small volcanic island of Reunion. Using population genomic and phylogenetic analyses, we reconstructed the population history of the different forms. We confirmed the monophyly of the complex and found that one of the lowland forms is paraphyletic and basal relative to others, a pattern highly consistent with in situ divergence. Our results suggest initial colonization of the island through the lowlands, followed by expansion into the highlands, which led to the evolution of a distinct geographical form, genetically and ecologically different from the lowland ones. Lowland forms seem to have experienced periods of geographical isolation, but they diverged from one another by sexual selection rather than niche change. Overall, low dispersal capabilities in this island bird combined with both geographical and ecological opportunities seem to explain how divergence occurred at such a small spatial scale.


Asunto(s)
Biodiversidad , Passeriformes , Animales , Islas , Filogenia
7.
Mol Ecol ; 29(6): 1137-1153, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32107807

RESUMEN

Recently diverged taxa showing marked phenotypic and ecological diversity provide optimal systems to understand the genetic processes underlying speciation. We used genome-wide markers to investigate the diversification of the Reunion grey white-eye (Zosterops borbonicus) on the small volcanic island of Reunion (Mascarene archipelago), where this species complex exhibits four geographical forms that are parapatrically distributed across the island and differ strikingly in plumage colour. One form restricted to the highlands is separated by a steep ecological gradient from three distinct lowland forms which meet at narrow hybrid zones that are not associated with environmental variables. Analyses of genomic variation based on single nucleotide polymorphism data from genotyping-by-sequencing and pooled RAD-seq approaches show that signatures of selection associated with elevation can be found at multiple regions across the genome, whereas most loci associated with the lowland forms are located on the Z sex chromosome. We identified TYRP1, a Z-linked colour gene, as a likely candidate locus underlying colour variation among lowland forms. Tests of demographic models revealed that highland and lowland forms diverged in the presence of gene flow, and divergence has progressed as gene flow was restricted by selection at loci across the genome. This system holds promise for investigating how adaptation and reproductive isolation shape the genomic landscape of divergence at multiple stages of the speciation process.


Asunto(s)
Evolución Molecular , Genética de Población , Cromosomas Sexuales/genética , Pájaros Cantores/genética , Animales , Femenino , Flujo Génico , Especiación Genética , Islas Genómicas , Geografía , Islas , Masculino , Modelos Genéticos , Pigmentación/genética , Polimorfismo de Nucleótido Simple , Reunión
8.
J Evol Biol ; 33(9): 1276-1293, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32603490

RESUMEN

The relative roles of natural and sexual selection in promoting evolutionary lineage divergence remains controversial and difficult to assess in natural systems. Local adaptation through natural selection is known to play a central role in promoting evolutionary divergence, yet secondary sexual traits can vary widely among species in recent radiations, suggesting that sexual selection may also be important in the early stages of speciation. Here, we compare rates of divergence in ecologically relevant traits (morphology) and sexually selected signalling traits (coloration) relative to neutral structure in genome-wide molecular markers and examine patterns of variation in sexual dichromatism to explore the roles of natural and sexual selection in the diversification of the songbird genus Junco (Aves: Passerellidae). Juncos include divergent lineages in Central America and several dark-eyed junco (J. hyemalis) lineages that diversified recently as the group recolonized North America following the last glacial maximum (ca. 18,000 years ago). We found an accelerated rate of divergence in sexually selected characters relative to ecologically relevant traits. Moreover, sexual dichromatism measurements suggested a positive relationship between the degree of colour divergence and the strength of sexual selection when controlling for neutral genetic distance. We also found a positive correlation between dichromatism and latitude, which coincides with the geographic axis of decreasing lineage age in juncos but also with a steep ecological gradient. Finally, we found significant associations between genome-wide variants linked to functional genes and proxies of both sexual and natural selection. These results suggest that the joint effects of sexual and ecological selection have played a prominent role in the junco radiation.


Asunto(s)
Evolución Biológica , Especiación Genética , Pigmentación/genética , Selección Sexual , Pájaros Cantores/genética , Animales , Femenino , Masculino , Pájaros Cantores/anatomía & histología
9.
Mol Ecol ; 27(24): 5137-5153, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30451354

RESUMEN

The formation of independent evolutionary lineages involves neutral and selective factors, and understanding their relative roles in population divergence is a fundamental goal of speciation research. Correlations between allele frequencies and environmental variability can reveal the role of selection, yet the relative contribution of drift can be difficult to establish. Recently diversified taxa like the Oregon junco (Aves, Passerellidae, Junco hyemalis oreganus) of western North America provide ideal scenarios to apply genetic-environment association analyses (GEA) while controlling for population structure. Analysis of genome-wide SNP loci revealed marked genetic structure consisting of differentiated populations in isolated, dry southern mountain ranges, and less divergent, recently expanded populations in humid northern latitudes. We used correlations between genomic and environmental variance to test for three specific modes of evolutionary divergence: (a) drift in geographic isolation, (b) differentiation along continuous selective gradients and (c) isolation-by-adaptation. We found evidence of strong drift in southern mountains, but also signals of local adaptation driven by temperature, precipitation, elevation and vegetation, especially when controlling for population history. We identified numerous variants under selection scattered across the genome, suggesting that local adaptation can promote rapid differentiation when acting over multiple independent loci.


Asunto(s)
Adaptación Biológica/genética , Evolución Biológica , Genética de Población , Pájaros Cantores/genética , Animales , Teorema de Bayes , Ambiente , Flujo Génico , Frecuencia de los Genes , Flujo Genético , Genotipo , América del Norte , Polimorfismo de Nucleótido Simple
10.
Mol Ecol ; 27(22): 4501-4515, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30252177

RESUMEN

Colour plays a prominent role in species recognition; therefore, understanding the proximate basis of pigmentation can provide insight into reproductive isolation and speciation. Colour differences between taxa may be the result of regulatory differences or be caused by mutations in coding regions of the expressed genes. To investigate these two alternatives, we studied the pigment composition and the genetic basis of coloration in two divergent dark-eyed junco (Junco hyemalis) subspecies, the slate-coloured and Oregon juncos, which have evolved marked differences in plumage coloration since the Last Glacial Maximum. We used HPLC and light microscopy to investigate pigment composition and deposition in feathers from four body areas. We then used RNA-seq to compare the relative roles of differential gene expression in developing feathers and sequence divergence in transcribed loci under common-garden conditions. Junco feathers differed in eumelanin and pheomelanin content and distribution. Within subspecies, in lighter feathers melanin synthesis genes were downregulated (including PMEL, TYR, TYRP1, OCA2 and MLANA), and ASIP was upregulated. Feathers from different body regions also showed differential expression of HOX and WNT genes. Feathers from the same body regions that differed in colour between the two subspecies showed differential expression of ASIP and three other genes (MFSD12, KCNJ13 and HAND2) associated with pigmentation in other taxa. Sequence variation in the expressed genes was not related to colour differences. Our findings support the hypothesis that differential regulation of a few genes can account for marked differences in coloration, a mechanism that may facilitate the rapid phenotypic diversification of juncos.


Asunto(s)
Plumas , Melaninas/análisis , Pigmentación/genética , Pájaros Cantores/genética , Animales , Melaninas/biosíntesis , Oregon
11.
Mol Ecol ; 27(23): 4839-4855, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30187980

RESUMEN

Detailed evaluations of genomic variation between sister species often reveal distinct chromosomal regions of high relative differentiation (i.e., "islands of differentiation" in FST ), but there is much debate regarding the causes of this pattern. We briefly review the prominent models of genomic islands of differentiation and compare patterns of genomic differentiation in three closely related pairs of New World warblers with the goal of evaluating support for the four models. Each pair (MacGillivray's/mourning warblers; Townsend's/black-throated green warblers; and Audubon's/myrtle warblers) consists of forms that were likely separated in western and eastern North American refugia during cycles of Pleistocene glaciations and have now come into contact in western Canada, where each forms a narrow hybrid zone. We show strong differences between pairs in their patterns of genomic heterogeneity in FST , suggesting differing selective forces and/or differing genomic responses to similar selective forces among the three pairs. Across most of the genome, levels of within-group nucleotide diversity (πWithin ) are almost as large as levels of between-group nucleotide distance (πBetween ) within each pair, suggesting recent common ancestry and/or gene flow. In two pairs, a pattern of the FST peaks having low πBetween suggests that selective sweeps spread between geographically differentiated groups, followed by local differentiation. This "sweep-before-differentiation" model is consistent with signatures of gene flow within the yellow-rumped warbler species complex. These findings add to our growing understanding of speciation as a complex process that can involve phases of adaptive introgression among partially differentiated populations.


Asunto(s)
Flujo Génico , Especiación Genética , Islas Genómicas , Pájaros Cantores/genética , Animales , Canadá , Variación Genética , Genómica , Modelos Genéticos , Pájaros Cantores/clasificación
12.
Mol Phylogenet Evol ; 120: 248-258, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29199106

RESUMEN

Assessing the relative contributions of immigration and diversification into the buildup of species diversity is key to understanding the role of historical processes in driving biogeographical and diversification patterns in species-rich regions. Here, we investigated how colonization, in situ speciation, and extinction history may have generated the present-day distribution and diversity of Goura crowned pigeons (Columbidae), a group of large forest-dwelling pigeons comprising four recognized species that are all endemic to New Guinea. We used a comprehensive geographical and taxonomic sampling based mostly on historical museum samples, and shallow shotgun sequencing, to generate complete mitogenomes, nuclear ribosomal clusters and independent nuclear conserved DNA elements. We used these datasets independently to reconstruct molecular phylogenies. Divergence time estimates were obtained using mitochondrial data only. All analyses revealed similar genetic divisions within the genus Goura and recovered as monophyletic groups the four species currently recognized, providing support for recent taxonomic changes based on differences in plumage characters. These four species are grouped into two pairs of strongly supported sister species, which were previously not recognized as close relatives: Goura sclaterii with Goura cristata, and Goura victoria with Goura scheepmakeri. While the geographical origin of the Goura lineage remains elusive, the crown age of 5.73 Ma is consistent with present-day species diversity being the result of a recent diversification within New Guinea. Although the orogeny of New Guinea's central cordillera must have played a role in driving diversification in Goura, cross-barrier dispersal seems more likely than vicariance to explain the speciation events having led to the four current species. Our results also have important conservation implications. Future assessments of the conservation status of Goura species should consider threat levels following the taxonomic revision proposed by del Hoyo and Collar (HBW and BirdLife International illustrated checklist of the birds of the world 1: non-passerines, 2014), which we show to be fully supported by genomic data. In particular, distinguishing G. sclaterii from G. scheepmakeri seems to be particularly relevant.


Asunto(s)
Columbidae/clasificación , Evolución Molecular , Animales , Columbidae/genética , ADN Mitocondrial/química , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Variación Genética , Genoma Mitocondrial , Nueva Guinea , Filogenia , Análisis de Secuencia de ADN
13.
Mol Ecol ; 26(10): 2812-2825, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28222237

RESUMEN

Social barriers have been shown to reduce gene flow and contribute to genetic structure among populations in species with high cognitive capacity and complex societies, such as cetaceans, apes and humans. In birds, high dispersal capacity is thought to prevent population divergence unless major geographical or habitat barriers induce isolation patterns by dispersal, colonization or adaptation limitation. We report that Iberian populations of the red-billed chough, a social, gregarious corvid with high dispersal capacity, show a striking degree of genetic structure composed of at least 15 distinct genetic units. Monitoring of marked individuals over 30 years revealed that long-distance movements over hundreds of kilometres are common, yet recruitment into breeding populations is infrequent and highly philopatric. Genetic differentiation is weakly related to geographical distance, and habitat types used are overall qualitatively similar among regions and regularly shared by individuals of different populations, so that genetic structure is unlikely to be due solely to isolation by distance or isolation by adaptation. Moreover, most population nuclei showed relatively high levels of genetic diversity, suggesting a limited role for genetic drift in significantly differentiating populations. We propose that social mechanisms may underlie this unprecedented level of genetic structure in birds through a pattern of isolation by social barriers not yet described, which may have driven this remarkable population divergence in the absence of geographical and environmental barriers.


Asunto(s)
Variación Genética , Genética de Población , Passeriformes/genética , Conducta Social , Animales , Conducta Animal , Flujo Génico , Flujo Genético , Repeticiones de Microsatélite , España
14.
Mol Ecol ; 25(24): 6175-6195, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27862578

RESUMEN

Natural systems composed of closely related taxa that vary in the degree of phenotypic divergence and geographic isolation provide an opportunity to investigate the rate of phenotypic diversification and the relative roles of selection and drift in driving lineage formation. The genus Junco (Aves: Emberizidae) of North America includes parapatric northern forms that are markedly divergent in plumage pattern and colour, in contrast to geographically isolated southern populations in remote areas that show moderate phenotypic divergence. Here, we quantify patterns of phenotypic divergence in morphology and plumage colour and use mitochondrial DNA genes, a nuclear intron, and genomewide SNPs to reconstruct the demographic and evolutionary history of the genus to infer relative rates of evolutionary divergence among lineages. We found that geographically isolated populations have evolved independently for hundreds of thousands of years despite little differentiation in phenotype, in sharp contrast to phenotypically diverse northern forms, which have diversified within the last few thousand years as a result of the rapid postglacial recolonization of North America. SNP data resolved young northern lineages into reciprocally monophyletic lineages, indicating low rates of gene flow even among closely related parapatric forms, and suggesting a role for strong genetic drift or multifarious selection acting on multiple loci in driving lineage divergence. Juncos represent a compelling example of speciation in action, where the combined effects of historical and selective factors have produced one of the fastest cases of speciation known in vertebrates.


Asunto(s)
Evolución Biológica , Genética de Población , Filogenia , Pájaros Cantores/genética , Animales , ADN Mitocondrial/genética , Variación Genética , América del Norte , Fenotipo , Filogeografía , Polimorfismo de Nucleótido Simple
15.
J Hered ; 107(4): 327-35, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26995742

RESUMEN

Studies on melanin-based color variation in a context of natural selection have provided a wealth of information on the link between phenotypic and genetic variation. Here, we evaluated associations between melanic plumage patterns and genetic polymorphism in the Réunion grey white-eye (Zosterops borbonicus), a species in which mutations on MC1R do not seem to play any role in explaining melanic variation. This species exhibits 5 plumage color variants that can be grouped into 3 color forms which occupy discrete geographic regions in the lowlands of Réunion, and a fourth high-elevation form which comprises 2 color morphs (grey and brown) and represents a true color polymorphism. We conducted a comprehensive survey of sequence variation in 96 individuals at a series of 7 candidate genes other than MC1R that have been previously shown to influence melanin-based color patterns in vertebrates, including genes that have rarely been studied in a wild bird species before: POMC, Agouti, TYR, TYRP1, DCT, Corin, and SLC24A5 Of these 7 genes, 2 (Corin and TYRP1) displayed an interesting shift in allele frequencies between lowland and highland forms and a departure from mutation-drift equilibrium consistent with balancing selection in the polymorphic highland form only. Sequence variation at Agouti, a gene frequently involved in melanin-based pigmentation patterning, was not associated with color forms or morphs. Thus, we suggest that functionally important changes in loci other than those classically studied are involved in the color polymorphism exhibited by the Réunion grey white-eye and possibly many other nonmodel species.


Asunto(s)
Aves/genética , Aves/metabolismo , Estudios de Asociación Genética , Variación Genética , Melaninas/metabolismo , Pigmentación/genética , Alelos , Animales , Plumas , Frecuencia de los Genes , Pigmentos Biológicos/genética , Pigmentos Biológicos/metabolismo , Selección Genética
16.
Proc Biol Sci ; 281(1788): 20140976, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-24943372

RESUMEN

Rock-paper-scissors (RPS) dynamics, which maintain genetic polymorphisms over time through negative frequency-dependent (FD) selection, can evolve in short-lived species with no generational overlap, where they produce rapid morph frequency cycles. However, most species have overlapping generations and thus, rapid RPS dynamics are thought to require stronger FD selection, the existence of which yet needs to be proved. Here, we experimentally demonstrate that two cumulative selective episodes, FD sexual selection reinforced by FD selection on offspring survival, generate sufficiently strong selection to generate rapid morph frequency cycles in the European common lizard Zootoca vivipara, a multi-annual species with major generational overlap. These findings show that the conditions required for the evolution of RPS games are fulfilled by almost all species exhibiting genetic polymorphisms and suggest that RPS games may be responsible for the maintenance of genetic diversity in a wide range of species.


Asunto(s)
Genotipo , Lagartos/fisiología , Preferencia en el Apareamiento Animal , Selección Genética , Animales , Lagartos/genética , Longevidad , Dinámica Poblacional
17.
Mol Phylogenet Evol ; 70: 362-77, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24145367

RESUMEN

Among-species phylogeographic concordance provides insight into the common processes driving lineage divergence in a particular region. However, identifying the processes that caused phylogeographic breaks is not always straight forward, and inferring past environmental conditions in combination with documented geologic events is sometimes necessary to explain current patterns. We searched for concordant phylogeographic patterns and investigated their causes in three bird species (Momotus mexicanus, Melanerpes chrysogenys, and Passerina leclancherii) that belong to three different avian orders and are endemic to the northernmost range of the Neotropical dry forest. We obtained mitochondrial DNA (ND2 and COI or cyt b) and nuclear DNA (20454, GAPDH, MUSK, and TGFB) sequences for at least one locus from 162 individuals across all species and defined climatically stable areas using environmental niche model projections for the last 130,000 years to have a paleoenvironmental framework for the phylogeographic results. All three species showed marked phylogeographic structure, with breaks found in roughly similar areas, such as the border between the Mexican states of Guerrero and Oaxaca, and between southern Jalisco and Michoacán. Both of these regions are known biogeographic breaks among other taxa. Patterns of genetic diversity and differentiation were partially compatible with climatically stable areas. Coalescent analyses revealed recent population growth and estimated the deeper haplogroup divergence of all three taxa to have occurred within the last 600,000 years. The phylogeographic patterns found are noteworthy because they are maintained in a relatively small area for bird species with continuous ranges, and highlight a unique situation when compared to phylogeographic patterns found in other studies of Neotropical birds that have stressed the role of geographic barriers to explain intraspecific differentiation. Our results point to a scenario of population isolation resulting in the present phylogeographic structure, likely a result of historical climate fluctuations that have fragmented and reconnected the Neotropical dry forest. This study contributes to a growing body of evidence indicating active diversification of endemic lineages in the northern Neotropical dry forest region.


Asunto(s)
Passeriformes/genética , Filogenia , Animales , ADN Mitocondrial/genética , Variación Genética , México , Filogeografía , Análisis de Secuencia de ADN , Árboles , Clima Tropical
18.
BMC Evol Biol ; 13: 192, 2013 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-24021154

RESUMEN

BACKGROUND: The geographic distribution of evolutionary lineages and the patterns of gene flow upon secondary contact provide insight into the process of divergence and speciation. We explore the evolutionary history of the common lizard Zootoca vivipara (= Lacerta vivipara) in the Iberian Peninsula and test the role of the Pyrenees and the Cantabrian Mountains in restricting gene flow and driving lineage isolation and divergence. We also assess patterns of introgression among lineages upon secondary contact, and test for the role of high-elevation trans-mountain colonisations in explaining spatial patterns of genetic diversity. We use mtDNA sequence data and genome-wide AFLP loci to reconstruct phylogenetic relationships among lineages, and measure genetic structure. RESULTS: The main genetic split in mtDNA corresponds generally to the French and Spanish sides of the Pyrenees as previously reported, in contrast to genome-wide AFLP data, which show a major division between NW Spain and the rest. Both types of markers support the existence of four distinct and geographically congruent genetic groups, which are consistent with major topographic barriers. Both datasets reveal the presence of three independent contact zones between lineages in the Pyrenean region, one in the Basque lowlands, one in the low-elevation mountains of the western Pyrenees, and one in the French side of the central Pyrenees. The latter shows genetic evidence of a recent, high-altitude trans-Pyrenean incursion from Spain into France. CONCLUSIONS: The distribution and age of major lineages is consistent with a Pleistocene origin and a role for both the Pyrenees and the Cantabrian Mountains in driving isolation and differentiation of Z. vivipara lineages at large geographic scales. However, mountain ranges are not always effective barriers to dispersal, and have not prevented a recent high-elevation trans-Pyrenean incursion that has led to asymmetrical introgression among divergent lineages. Cytonuclear discordance in patterns of genetic structure and introgression at contact zones suggests selection may be involved at various scales. Suture zones are important areas for the study of lineage formation and speciation, and our results show that biogeographic barriers can yield markedly different phylogeographic patterns in different vertebrate and invertebrate taxa.


Asunto(s)
Lagartos/clasificación , Lagartos/genética , Filogeografía , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , ADN Mitocondrial/genética , Francia , Flujo Génico , Genética de Población , Datos de Secuencia Molecular , España
19.
Am Nat ; 182(6): 820-33, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24231541

RESUMEN

Parasite diversity on remote oceanic archipelagos is determined by the number and timing of colonizations and by in situ diversification rate. In this study, we compare intra-archipelago diversity of two hemosporidian parasite genera, Plasmodium and Leucocytozoon, infecting birds of the Mascarene archipelago. Despite the generally higher vagility of Plasmodium parasites, we report a diversity of Plasmodium cytochrome b haplotypes in the archipelago much lower than that of Leucocytozoon. Using phylogenetic data, we find that this difference in diversity is consistent with differences in the timing and number of colonizations, while rates of diversification do not vary significantly between the two genera. The prominence of immigration history in explaining current diversity patterns highlights the importance of historical contingencies in driving disparate biogeographic patterns in potentially harmful blood parasites infecting island birds.


Asunto(s)
Haemosporida/genética , Biodiversidad , Citocromos b/genética , Geografía , Haemosporida/clasificación , Haplotipos , Islas , Filogenia , Plasmodium/clasificación , Plasmodium/genética , Especificidad de la Especie , Factores de Tiempo
20.
Proc Biol Sci ; 280(1760): 20130423, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23595273

RESUMEN

Predicting where threatened species occur is useful for making informed conservation decisions. However, because they are usually rare, surveying threatened species is often expensive and time intensive. Here, we show how regions where common species exhibit high genetic and morphological divergence among populations can be used to predict the occurrence of species of conservation concern. Intraspecific variation of common species of birds, bats and frogs from Ecuador were found to be a significantly better predictor for the occurrence of threatened species than suites of environmental variables or the occurrence of amphibians and birds. Fully 93 per cent of the threatened species analysed had their range adequately represented by the geographical distribution of the morphological and genetic variation found in seven common species. Both higher numbers of threatened species and greater genetic and morphological variation of common species occurred along elevation gradients. Higher levels of intraspecific divergence may be the result of disruptive selection and/or introgression along gradients. We suggest that collecting data on genetic and morphological variation in common species can be a cost effective tool for conservation planning, and that future biodiversity inventories include surveying genetic and morphological data of common species whenever feasible.


Asunto(s)
Distribución Animal/fisiología , Biodiversidad , Conservación de los Recursos Naturales/métodos , Especies en Peligro de Extinción , Variación Genética , Vertebrados/genética , Animales , Ecuador , Ambiente , Modelos Biológicos , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA