Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-35216419

RESUMEN

After stroke, there is a delayed neuronal loss in brain areas surrounding the infarct, which may in part be mediated by microglial phagocytosis of stressed neurons. Microglial phagocytosis of stressed or damaged neurons can be mediated by UDP released from stressed neurons activating the P2Y6 receptor on microglia, inducing microglial phagocytosis of such neurons. We show evidence here from a small trial that the knockout of the P2Y6 receptor, required for microglial phagocytosis of neurons, prevents the delayed neuronal loss after transient, focal brain ischemia induced by endothelin-1 injection in mice. Wild-type mice had neuronal loss and neuronal nuclear material within microglia in peri-infarct areas. P2Y6 receptor knockout mice had no significant neuronal loss in peri-infarct brain areas seven days after brain ischemia. Thus, delayed neuronal loss after stroke may in part be mediated by microglial phagocytosis of stressed neurons, and the P2Y6 receptor is a potential treatment target to prevent peri-infarct neuronal loss.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Neuronas/metabolismo , Neuronas/patología , Receptores Purinérgicos P2/metabolismo , Animales , Infarto Encefálico/metabolismo , Infarto Encefálico/patología , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , Fagocitosis/fisiología , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología
2.
J Neuroinflammation ; 18(1): 225, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635136

RESUMEN

Inflammation may contribute to multiple brain pathologies. One cause of inflammation is lipopolysaccharide/endotoxin (LPS), the levels of which are elevated in blood and/or brain during bacterial infections, gut dysfunction and neurodegenerative diseases, such as Parkinson's disease. How inflammation causes neuronal loss is unclear, but one potential mechanism is microglial phagocytosis of neurons, which is dependent on the microglial P2Y6 receptor. We investigated here whether the P2Y6 receptor was required for inflammatory neuronal loss. Intraperitoneal injection of LPS on 4 successive days resulted in specific loss of dopaminergic neurons (measured as cells staining with tyrosine hydroxylase or NeuN) in the substantia nigra of wild-type mice, but no neuronal loss in cortex or hippocampus. This supports the hypothesis that neuronal loss in Parkinson's disease may be driven by peripheral LPS. By contrast, there was no LPS-induced neuronal loss in P2Y6 receptor knockout mice. In vitro, LPS-induced microglial phagocytosis of cells was prevented by inhibition of the P2Y6 receptor, and LPS-induced neuronal loss was reduced in mixed glial-neuronal cultures from P2Y6 receptor knockout mice. This supports the hypothesis that microglial phagocytosis contributes to inflammatory neuronal loss, and can be prevented by blocking the P2Y6 receptor, suggesting that P2Y6 receptor antagonists might be used to prevent inflammatory neuronal loss in Parkinson's disease and other brain pathologies involving inflammatory neuronal loss.


Asunto(s)
Lipopolisacáridos/toxicidad , Neuronas/metabolismo , Neuronas/patología , Receptores Purinérgicos P2/deficiencia , Sustancia Negra/metabolismo , Sustancia Negra/patología , Animales , Línea Celular Transformada , Células Cultivadas , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Técnicas de Cultivo de Órganos , Células PC12 , Ratas , Sustancia Negra/efectos de los fármacos
3.
PLoS Biol ; 11(4): e1001539, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23610559

RESUMEN

Axons require a constant supply of the labile axon survival factor Nmnat2 from their cell bodies to avoid spontaneous axon degeneration. Here we investigate the mechanism of fast axonal transport of Nmnat2 and its site of action for axon maintenance. Using dual-colour live-cell imaging of axonal transport in SCG primary culture neurons, we find that Nmnat2 is bidirectionally trafficked in axons together with markers of the trans-Golgi network and synaptic vesicles. In contrast, there is little co-migration with mitochondria, lysosomes, and active zone precursor vesicles. Residues encoded by the small, centrally located exon 6 are necessary and sufficient for stable membrane association and vesicular axonal transport of Nmnat2. Within this sequence, a double cysteine palmitoylation motif shared with GAP43 and surrounding basic residues are all required for efficient palmitoylation and stable association with axonal transport vesicles. Interestingly, however, disrupting this membrane association increases the ability of axonally localized Nmnat2 to preserve transected neurites in primary culture, while re-targeting the strongly protective cytosolic mutants back to membranes abolishes this increase. Larger deletions within the central domain including exon 6 further enhance Nmnat2 axon protective capacity to levels that exceed that of the slow Wallerian degeneration protein, Wld(S). The mechanism underlying the increase in axon protection appears to involve an increased half-life of the cytosolic forms, suggesting a role for palmitoylation and membrane attachment in Nmnat2 turnover. We conclude that Nmnat2 activity supports axon survival through a site of action distinct from Nmnat2 transport vesicles and that protein stability, a key determinant of axon protection, is enhanced by mutations that disrupt palmitoylation and dissociate Nmnat2 from these vesicles.


Asunto(s)
Axones/fisiología , Nicotinamida-Nucleótido Adenililtransferasa/fisiología , Secuencias de Aminoácidos , Animales , Supervivencia Celular , Células Cultivadas , Exones , Aparato de Golgi/metabolismo , Semivida , Membranas Intracelulares/metabolismo , Lipoilación , Ratones , Ratones Endogámicos C57BL , Neuronas/fisiología , Cultivo Primario de Células , Multimerización de Proteína , Estabilidad Proteica , Transporte de Proteínas , Análisis de la Célula Individual , Imagen de Lapso de Tiempo , Vesículas Transportadoras/metabolismo , Ubiquitinación
4.
J Biol Chem ; 289(47): 32858-70, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25271157

RESUMEN

The NAD-synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 (NMNAT2) is a critical survival factor for axons and its constant supply from neuronal cell bodies into axons is required for axon survival in primary culture neurites and axon extension in vivo. Recently, we showed that palmitoylation is necessary to target NMNAT2 to post-Golgi vesicles, thereby influencing its protein turnover and axon protective capacity. Here we find that NMNAT2 is a substrate for cytosolic thioesterases APT1 and APT2 and that palmitoylation/depalmitoylation dynamics are on a time scale similar to its short half-life. Interestingly, however, depalmitoylation does not release NMNAT2 from membranes. The mechanism of palmitoylation-independent membrane attachment appears to be mediated by the same minimal domain required for palmitoylation itself. Furthermore, we identify several zDHHC palmitoyltransferases that influence NMNAT2 palmitoylation and subcellular localization, among which a role for zDHHC17 (HIP14) in neuronal NMNAT2 palmitoylation is best supported by our data. These findings shed light on the enzymatic regulation of NMNAT2 palmitoylation and highlight individual thioesterases and palmitoyltransferases as potential targets to modulate NMNAT2-dependent axon survival.


Asunto(s)
Aciltransferasas/metabolismo , Axones/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Tioléster Hidrolasas/metabolismo , Aciltransferasas/genética , Animales , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Lipoilación/efectos de los fármacos , Ratones Endogámicos C57BL , Mutación , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/genética , Ácido Palmítico/metabolismo , Propiolactona/análogos & derivados , Propiolactona/farmacología , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad por Sustrato , Tioléster Hidrolasas/genética
5.
Autophagy ; 19(2): 692-705, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35786165

RESUMEN

The accumulation of toxic protein aggregates in multiple neurodegenerative diseases is associated with defects in the macroautophagy/autophagy-lysosome pathway. The amelioration of disease phenotypes across multiple models of neurodegeneration can be achieved through modulating the master regulator of lysosome function, TFEB (transcription factor EB). Using a novel multi-parameter high-throughput screen for cytoplasmic:nuclear translocation of endogenous TFEB and the related transcription factor TFE3, we screened the Published Kinase Inhibitor Set 2 (PKIS2) library as proof of principle and to identify kinase regulators of TFEB and TFE3. Given that TFEB and TFE3 are responsive to cellular stress we have established assays for cellular toxicity and lysosomal function, critical to ensuring the identification of hit compounds with only positive effects on lysosome activity. In addition to AKT inhibitors which regulate TFEB localization, we identified a series of quinazoline-derivative compounds that induced TFEB and TFE3 translocation. A novel series of structurally-related analogs was developed, and several compounds induced TFEB and TFE3 translocation at higher potency than previously screened compounds. KINOMEscan and cell-based KiNativ kinase profiling revealed high binding for the PRKD (protein kinase D) family of kinases, suggesting good selectivity for these compounds. We describe and utilize a cellular target-validation platform using CRISPRi knockdown and orthogonal PRKD inhibitors to demonstrate that the activity of these compounds is independent of PRKD inhibition. The more potent analogs induced subsequent upregulation of the CLEAR gene network and cleared pathological HTT protein in a cellular model of proteinopathy, demonstrating their potential to alleviate neurodegeneration-relevant phenotypes. Abbreviations: AD: Alzheimer disease; AK: adenylate kinase; CLEAR: coordinated lysosomal expression and regulation; CQ: chloroquine; HD: Huntington disease; PD: Parkinson disease; PKIS2: Published Kinase Inhibitor Set 2; PRKD: protein kinase D; TFEB: transcription factor EB.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Regulación de la Expresión Génica , Núcleo Celular/metabolismo , Lisosomas/metabolismo
6.
Methods Mol Biol ; 2431: 73-93, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412272

RESUMEN

Neurones are highly polarized cells with extensive axonal projections that rely on transport of proteins, RNAs, and organelles in a bidirectional manner to remain healthy. This process, known as axonal transport, can be imaged in real time through epifluorescent imaging of fluorescently labeled proteins, organelles, and other cargoes. While this is most conveniently done in primary neuronal cultures, it is more physiologically relevant when carried out in the context of a developed nerve containing both axons and glia. Here we outline how to image axonal transport ex vivo in sciatic and optic nerves, and the fimbria of the fornix. These methods could be altered to image other fluorescently labeled molecules, as well as different mechanisms of intracellular transport.


Asunto(s)
Transporte Axonal , Axones , Transporte Axonal/fisiología , Axones/metabolismo , Neuronas , Nervio Óptico/fisiología , Nervios Periféricos/metabolismo , Nervio Ciático
7.
Cell Rep ; 37(13): 110148, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965424

RESUMEN

Microglia are implicated in neurodegeneration, potentially by phagocytosing neurons, but it is unclear how to block the detrimental effects of microglia while preserving their beneficial roles. The microglial P2Y6 receptor (P2Y6R) - activated by extracellular UDP released by stressed neurons - is required for microglial phagocytosis of neurons. We show here that injection of amyloid beta (Aß) into mouse brain induces microglial phagocytosis of neurons, followed by neuronal and memory loss, and this is all prevented by knockout of P2Y6R. In a chronic tau model of neurodegeneration (P301S TAU mice), P2Y6R knockout prevented TAU-induced neuronal and memory loss. In vitro, P2Y6R knockout blocked microglial phagocytosis of live but not dead targets and reduced tau-, Aß-, and UDP-induced neuronal loss in glial-neuronal cultures. Thus, the P2Y6 receptor appears to mediate Aß- and tau-induced neuronal and memory loss via microglial phagocytosis of neurons, suggesting that blocking this receptor may be beneficial in the treatment of neurodegenerative diseases.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Trastornos de la Memoria/patología , Microglía/metabolismo , Enfermedades Neurodegenerativas/patología , Fagocitosis , Receptores Purinérgicos P2/fisiología , Proteínas tau/metabolismo , Animales , Femenino , Masculino , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Proteínas tau/genética
8.
Neurobiol Aging ; 68: 68-75, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29729423

RESUMEN

In Alzheimer's disease, many indicators point to a central role for poor axonal transport, but the potential for stimulating axonal transport to alleviate the disease remains largely untested. Previously, we reported enhanced anterograde axonal transport of mitochondria in 8- to 11-month-old MAPTP301L knockin mice, a genetic model of frontotemporal dementia with parkinsonism-17T. In this study, we further characterized the axonal transport of mitochondria in younger MAPTP301L mice crossed with the familial Alzheimer's disease model, TgCRND8, aiming to test whether boosting axonal transport in young TgCRND8 mice can alleviate axonal swelling. We successfully replicated the enhancement of anterograde axonal transport in young MAPTP301L/P301L knockin animals. Surprisingly, we found that in the presence of the amyloid precursor protein mutations, MAPTP301L/P3101L impaired anterograde axonal transport. The numbers of plaque-associated axonal swellings or amyloid plaques in TgCRND8 brains were unaltered. These findings suggest that amyloid-ß promotes an action of mutant tau that impairs axonal transport. As amyloid-ß levels increase with age even without amyloid precursor protein mutation, we suggest that this rise could contribute to age-related decline in frontotemporal dementia.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Transporte Axonal/genética , Demencia Frontotemporal/etiología , Demencia Frontotemporal/genética , Estudios de Asociación Genética , Variación Genética , Mutación , Proteínas tau/genética , Envejecimiento/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales , Transporte Axonal/fisiología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/metabolismo
9.
Neurobiol Aging ; 36(2): 971-81, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25443288

RESUMEN

Axonal transport is critical for supplying newly synthesized proteins, organelles, mRNAs, and other cargoes from neuronal cell bodies into axons. Its impairment in many neurodegenerative conditions appears likely to contribute to pathogenesis. Axonal transport also declines during normal aging, but little is known about the timing of these changes, or about the effect of aging on specific cargoes in individual axons. This is important for understanding mechanisms of age-related axon loss and age-related axonal disorders. Here we use fluorescence live imaging of peripheral nerve and central nervous system tissue explants to investigate vesicular and mitochondrial axonal transport. Interestingly, we identify 2 distinct periods of change, 1 period during young adulthood and the other in old age, separated by a relatively stable plateau during most of adult life. We also find that after tibial nerve regeneration, even in old animals, neurons are able to support higher transport rates of each cargo for a prolonged period. Thus, the age-related decline in axonal transport is not an inevitable consequence of either aging neurons or an aging systemic milieu.


Asunto(s)
Envejecimiento/fisiología , Transporte Axonal/fisiología , Enfermedades Neurodegenerativas/etiología , Envejecimiento/patología , Animales , Axones/metabolismo , Axones/patología , Femenino , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Imagen Molecular , Regeneración Nerviosa , Enfermedades Neurodegenerativas/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/fisiología , Imagen Óptica , Nervios Periféricos/metabolismo , Nervio Tibial/fisiología
10.
Bioarchitecture ; 3(5): 133-40, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24284888

RESUMEN

The NAD-synthesizing enzyme NMNAT2 is critical for axon survival in primary culture and its depletion may contribute to axon degeneration in a variety of neurodegenerative disorders. Here we discuss several recent reports from our laboratory that establish a critical role for NMNAT2 in axon growth in vivo in mice and shed light on the delivery and turnover of this survival factor in axons. In the absence of NMNAT2, axons fail to extend more than a short distance beyond the cell body during embryonic development, implying a requirement for NMNAT2 in axon maintenance even during development. Furthermore, we highlight findings regarding the bidirectional trafficking of NMNAT2 in axons on a vesicle population that undergoes fast axonal transport in primary culture neurites and in mouse sciatic nerve axons in vivo. Surprisingly, loss of vesicle association boosts the axon protective capacity of NMNAT2, an effect that is at least partially mediated by a longer protein half-life of cytosolic NMNAT2 variants. Analysis of wild-type and variant NMNAT2 in mouse sciatic nerves and Drosophila olfactory receptor neuron axons supports the existence of a similar mechanism in vivo, highlighting the potential for regulation of NMNAT2 stability and turnover as a mechanism to modulate axon degeneration in vivo.


Asunto(s)
Axones/metabolismo , Axones/patología , Axones/fisiología , Eliminación de Gen , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Neuritas/patología , Nicotinamida-Nucleótido Adenililtransferasa/genética , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Nicotinamida-Nucleótido Adenililtransferasa/fisiología , Fracciones Subcelulares/metabolismo , Degeneración Walleriana/patología , Degeneración Walleriana/fisiopatología , Animales
11.
Sci Rep ; 3: 2567, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23995269

RESUMEN

The NAD-synthesising enzyme Nmnat2 is a critical survival factor for axons in vitro and in vivo. We recently reported that loss of axonal transport vesicle association through mutations in its isoform-specific targeting and interaction domain (ISTID) reduces Nmnat2 ubiquitination, prolongs its half-life and boosts its axon protective capacity in primary culture neurons. Here, we report evidence for a role of ISTID sequences in tuning Nmnat2 localisation, stability and protective capacity in vivo. Deletion of central ISTID sequences abolishes vesicle association and increases protein stability of fluorescently tagged, transgenic Nmnat2 in mouse peripheral axons in vivo. Overexpression of fluorescently tagged Nmnat2 significantly delays Wallerian degeneration in these mice. Furthermore, while mammalian Nmnat2 is unable to protect transected Drosophila olfactory receptor neuron axons in vivo, mutant Nmnat2s lacking ISTID regions substantially delay Wallerian degeneration. Together, our results establish Nmnat2 localisation and turnover as a valuable target for modulating axon degeneration in vivo.


Asunto(s)
Axones/metabolismo , Axones/patología , Eliminación de Gen , Nicotinamida-Nucleótido Adenililtransferasa/genética , Fracciones Subcelulares/metabolismo , Degeneración Walleriana/patología , Degeneración Walleriana/fisiopatología , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Nicotinamida-Nucleótido Adenililtransferasa/metabolismo , Relación Estructura-Actividad , Fracciones Subcelulares/ultraestructura , Degeneración Walleriana/prevención & control
12.
Science ; 337(6093): 481-4, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22678360

RESUMEN

Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway.


Asunto(s)
Proteínas del Dominio Armadillo/genética , Proteínas del Dominio Armadillo/fisiología , Axones/fisiología , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Neuronas/fisiología , Degeneración Walleriana , Animales , Animales Modificados Genéticamente , Apoptosis , Proteínas del Dominio Armadillo/análisis , Axones/ultraestructura , Axotomía , Supervivencia Celular , Células Cultivadas , Proteínas del Citoesqueleto/análisis , Desnervación , Drosophila/embriología , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/análisis , Ratones , Mutación , Nervio Ciático/lesiones , Nervio Ciático/fisiología , Transducción de Señal , Ganglio Cervical Superior/citología , Técnicas de Cultivo de Tejidos
13.
PLoS One ; 5(2): e9077, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20174443

RESUMEN

BACKGROUND: Environmental enrichment (EE) in laboratory animals improves neurological function and motor/cognitive performance, and is proposed as a strategy for treating neurodegenerative diseases. EE has been investigated in the R6/2 mouse model of Huntington's disease (HD), where increased social interaction, sensory stimulation, exploration, and physical activity improved survival. We have also shown previously that HD patients and R6/2 mice have disrupted circadian rhythms, treatment of which may improve cognition, general health, and survival. METHODOLOGY/PRINCIPAL FINDINGS: We examined the effects of EE on the behavioral phenotype and circadian activity of R6/2 mice. Our mice are typically housed in an "enriched" environment, so the EE that the mice received was in addition to these enhanced housing conditions. Mice were either kept in their home cages or exposed daily to the EE (a large playground box containing running wheels and other toys). The "home cage" and "playground" groups were subdivided into "handling" (stimulated throughout the experimental period) and "no-handling" groups. All mice were assessed for survival, body weight, and cognitive performance in the Morris water maze (MWM). Mice in the playground groups were more active throughout the enrichment period than home cage mice. Furthermore, R6/2 mice in the EE/no-handling groups had better survival than those in the home cage/no-handling groups. Sex differences were seen in response to EE. Handling was detrimental to R6/2 female mice, but EE increased the body weight of male R6/2 and WT mice in the handling group. EE combined with handling significantly improved MWM performance in female, but not male, R6/2 mice. CONCLUSIONS/SIGNIFICANCE: We show that even when mice are living in an enriched home cage, further EE had beneficial effects. However, the improvements in cognition and survival vary with sex and genotype. These results indicate that EE may improve the quality of life of HD patients, but we suggest that EE as a therapy should be tailored to individuals.


Asunto(s)
Modelos Animales de Enfermedad , Planificación Ambiental , Enfermedad de Huntington/genética , Enfermedad de Huntington/fisiopatología , Crianza de Animales Domésticos/métodos , Animales , Ritmo Circadiano , Femenino , Genotipo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Actividad Motora , Prueba de Desempeño de Rotación con Aceleración Constante , Factores Sexuales , Análisis de Supervivencia , Natación , Expansión de Repetición de Trinucleótido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA