Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Phytopathology ; 113(6): 998-1009, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36596212

RESUMEN

Succinate dehydrogenase inhibitors (SDHIs) are keystone synthetic fungicides used to manage Botrytis cinerea in several hosts. In this study, we investigated the cross-resistance between five new SDHIs (pyraziflumid, isofetamid, benzovindiflupyr, fluxapyroxad, and pydiflumetofen) with commonly used SDHIs boscalid and fluopyram. Different mutations were detected in the sdhB gene in B. cinerea collected from Michigan grapes, and their frequency and EC50 value were determined. Among 216 B. cinerea boscalid-resistant isolates, five different mutations were detected, including H272R/Y, P225F/H, and N230I, at frequencies of 82.6, 4.3, 11.5, 0.4, and 5.3%, respectively. Five isolates of each genotype were used to screen the cross-resistance of the SDHIs. We classified the resistance profile of our mutants into five patterns. We report that all tested mutants were sensitive to benzovindiflupyr, indicating that it can be used as an effective fungicide against all B. cinerea mutants identified in this study. In addition, fluopyram, pydiflumetofen, and isofetamid can provide effective control according to which type of mutation is present in the field. We also developed and compared two molecular diagnostic tools, rhAMP and TaqMan assays, for rapid detection of SDHI resistance-associated mutants in B. cinerea. We report that the TaqMan assay was more successful than the rhAMP assay in detecting the B. cinerea mutant DNA at ≤10 pg and in a single assay was capable of monitoring two amino acid positions. Our results provide essential information about new SDHIs and provide molecular tools for monitoring SDHI resistance mutations, which will assist in gray mold disease control.


Asunto(s)
Fungicidas Industriales , Succinato Deshidrogenasa , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/farmacología , Patología Molecular , Enfermedades de las Plantas , Fungicidas Industriales/farmacología , Botrytis/genética , Niacinamida/farmacología , Farmacorresistencia Fúngica/genética
2.
Phytopathology ; 113(1): 80-89, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35918851

RESUMEN

Since its reemergence in 2004, Pseudoperonospora cubensis, the causal agent of cucurbit downy mildew (CDM), has experienced significant changes in fungicide sensitivity. Presently, frequent fungicide applications are required to control the disease in cucumber due to the loss of host resistance. Carboxylic acid amides (CAA) and quinone outside inhibitors (QoI) are two fungicide groups used to control foliar diseases in cucurbits, including CDM. Resistance to these fungicides is associated with single nucleotide polymorphism (SNP) mutations. In this study, we used population analyses to determine the occurrence of fungicide resistance mutations to CAA and QoI fungicides in host-adapted clade 1 and clade 2 P. cubensis isolates. Our results revealed that CAA-resistant genotypes occurred more prominently in clade 2 isolates, with more sensitive genotypes observed in clade 1 isolates, while QoI resistance was widespread across isolates from both clades. We also determined that wild cucurbits can serve as reservoirs for P. cubensis isolates containing fungicide resistance alleles. Finally, we report that the G1105W substitution associated with CAA resistance was more prominent within clade 2 P. cubensis isolates while the G1105V resistance substitution and sensitivity genotypes were more prominent in clade 1 isolates. Our findings of clade-specific occurrence of fungicide resistance mutations highlight the importance of understanding the population dynamics of P. cubensis clades by crop and region to design effective fungicide programs and establish accurate baseline sensitivity to active ingredients in P. cubensis populations.


Asunto(s)
Fungicidas Industriales , Oomicetos , Peronospora , Fungicidas Industriales/farmacología , Amidas/farmacología , Ácidos Carboxílicos/farmacología , Enfermedades de las Plantas , Oomicetos/genética , Mutación , Estrobilurinas/farmacología , Quinonas/farmacología
3.
BMC Biol ; 20(1): 262, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36447225

RESUMEN

BACKGROUND: During range expansion in spatially distributed habitats, organisms differ from one another in terms of their patterns of localization versus propagation. To exploit locations or explore the landscape? This is the competition-colonization trade-off, a dichotomy at the core of ecological succession. In bacterial communities, this trade-off is a fundamental mechanism towards understanding spatio-temporal fluxes in microbiome composition. RESULTS: Using microfluidics devices as structured bacterial habitats, we show that, in a synthetic two-species community of motile strains, Escherichia coli is a fugitive species, whereas Pseudomonas aeruginosa is a slower colonizer but superior competitor. We provide evidence highlighting the role of succession and the relevance of this trade-off in the community assembly of bacteria in spatially distributed patchy landscapes. Furthermore, aggregation-dependent priority effects enhance coexistence which is not possible in well-mixed environments. CONCLUSIONS: Our findings underscore the interplay between micron-scale landscape structure and dispersal in shaping biodiversity patterns in microbial ecosystems. Understanding this interplay is key to unleash the technological revolution of microbiome applications.


Asunto(s)
Infecciones por Escherichia coli , Microbiota , Humanos , Biodiversidad , Escherichia coli , Pseudomonas aeruginosa
4.
J Insect Sci ; 23(4)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37428828

RESUMEN

Flight mills are widely used to investigate insect flight behavior. As technology advances, the means to build a computerized control system for a flight mill has become more accessible in terms of both price and availability of components. However, the specialized electronics and programming knowledge required to build such a system can still present an obstacle to interested parties. Here, we describe a simple and inexpensive flight mill control system that can be easily assembled and operated without specialized experience. The hardware and software components are built around an Arduino single-board microcontroller, which outputs raw data in the form of timestamped detections of rotations of the flight mill arm. This control system is suitable both as the basis for new flight mills and for replacing outdated computer controls on existing flight mills. Additionally, it can be used with any rotary flight mill design that uses an electronic sensor to count rotations.


Asunto(s)
Vuelo Animal , Insectos , Animales
5.
Plant Dis ; 105(2): 285-294, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32762329

RESUMEN

Botrytis cinerea on grapes causes bunch rot at both pre- and postharvest stages, in which losses can reach up to 100%. Chemical control primarily relies on the prophylactic use of site-specific fungicides. Repeated applications of these products raise the risk of fungicide resistance development in B. cinerea populations, which can result in disease control failures. To determine the extent of resistance, B. cinerea isolates were collected from grape clusters in the northwest and southwest grape growing regions of Michigan in 2014 and 2018 (n = 115 and 125, respectively). These isolates were phenotyped using discriminatory doses of eight fungicides to determine the levels of resistance. Fungicide resistance increased from 2014 to 2018, mostly affecting the active ingredients fenhexamid, fluopyram, and iprodione. B. cinerea isolates resistant to multiple fungicides were detected in 2014 and 2018, with a higher frequency of resistance in 2018. TaqMan real-time PCR has been developed to detect B. cinerea fungicide resistance to fenhexamid and to differentiate the erg27 F412S/I/V alleles. The TaqMan assay was tested for sensitivity, specificity, and reproducibility on purified DNA and infected grape tissue samples. Our data provide essential information to growers about the efficacy for B. cinerea control using the available botryticides. Furthermore, the developed fenhexamid markers will be transferred to diagnostic clinics to assist growers in the management of bunch rot before resistance-related control failures occur.


Asunto(s)
Botrytis , Fungicidas Industriales , Amidas , Botrytis/genética , Farmacorresistencia Fúngica/genética , Granjas , Fungicidas Industriales/farmacología , Michigan , Enfermedades de las Plantas , Reproducibilidad de los Resultados
6.
J Insect Sci ; 21(1)2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33638986

RESUMEN

Vernonia [Vernonia galamensis (Cass.) Less.] (Asterales: Asteraceae) was examined as a potential trap crop for the cotton (Gossypium hirsutum L., Malvales: Malvaceae) arthropod complex. Four rows of vernonia were embedded within a 96-row cotton field. The abundance of true bug pests, true bug predators, and spiders were determined by whole-plant and sweep net sampling procedures during the early, middle, and late phases of the cotton-growing season. The census data showed that the arthropods had a strong preference for the vernonia trap crop throughout the cotton-growing season. The movement of the arthropods from the trap crop into cotton was also measured using the protein immunomarking technique as a mark-capture procedure. The arthropods inhabiting the vernonia trap crop were marked directly in the field with a broadcast spray application of egg albumin (protein) during each phase of the study. In turn, the captured specimens were examined for the presence of the mark by an egg albumin-specific enzyme-linked immunosorbent assay. Very few marked specimens were captured beyond the vernonia trap crop 1, 3, and 6 d after each marking event. The arthropods' strong attraction and fidelity to vernonia indicate that it could serve as a trap crop for cotton pests and a refuge for natural enemies.


Asunto(s)
Distribución Animal , Control de Insectos/métodos , Insectos/fisiología , Rasgos de la Historia de Vida , Arañas/fisiología , Vernonia , Animales , Arizona , Producción de Cultivos , Gossypium/crecimiento & desarrollo , Vernonia/crecimiento & desarrollo
7.
J Insect Sci ; 21(6)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34918111

RESUMEN

We examined the feasibility of externally marking insects with the liquid fluorescent forensic theft deterrent, SmartWater (SmartWater CSI, LLC.). We sprayed captive Lygus hesperus (Knight) (Hemiptera: Miridae), Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), and Hippodamia convergens Guérin-Méneville (Coleoptera: Coccinellidae) with SmartWater fluorophore, and then qualitatively examined them for fluorescence by visual inspection under ultraviolet (UV) light and quantitatively measured them with a multiwavelength microplate fluorometer. The results indicate that this product has enormous potential as a taggant for L. hesperus and B. tabaci. However, the marking efficiency for H. convergens was only adequate. The advantages and limitations of using SmartWater as a biological marker for arthropod mark-release-recapture research are discussed.


Asunto(s)
Sistemas de Identificación Animal , Artrópodos , Colorantes Fluorescentes , Animales
8.
Zygote ; 28(1): 9-23, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31590697

RESUMEN

Germ plasm, a cytoplasmic factor of germline cell differentiation, is suggested to be a perspective tool for in vitro meiotic differentiation. To discriminate between the: (1) germ plasm-related structures (GPRS) involved in meiosis triggering; and (2) GPRS involved in the germ plasm storage phase, we investigated gametogenesis in the marine medaka Oryzias melastigma. The GPRS of the mitosis-to-meiosis period are similar in males and females. In both sexes, five events typically occur: (1) turning of the primary Vasa-positive germ plasm granules into the Vasa-positive intermitochondrial cement (IMC); (2) aggregation of some mitochondria by IMC followed by arising of mitochondrial clusters; (3) intramitochondrial localization of IMC-originated Vasa; followed by (4) mitochondrial cluster degradation; and (5) intranuclear localization of Vasa followed by this protein entering the nuclei (gonial cells) and synaptonemal complexes (zygotene-pachytene meiotic cells). In post-zygotene/pachytene gametogenesis, the GPRS are sex specific; the Vasa-positive chromatoid bodies are found during spermatogenesis, but oogenesis is characterized by secondary arising of Vasa-positive germ plasm granules followed by secondary formation and degradation of mitochondrial clusters. A complex type of germ plasm generation, 'the follicle cell assigned germ plasm formation', was found in late oogenesis. The mechanisms discovered are recommended to be taken into account for possible reconstruction of those under in vitro conditions.


Asunto(s)
Gránulos Citoplasmáticos/fisiología , ARN Helicasas DEAD-box/metabolismo , Células Germinativas/citología , Oocitos/citología , Oogénesis , Oryzias/crecimiento & desarrollo , Espermatocitos/citología , Espermatogénesis , Animales , Núcleo Celular , Gránulos Citoplasmáticos/ultraestructura , Femenino , Proteínas de Peces/metabolismo , Células Germinativas/metabolismo , Células Germinativas/ultraestructura , Masculino , Oocitos/metabolismo , Espermatocitos/metabolismo
9.
J Insect Sci ; 20(6)2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33347589

RESUMEN

A molecular gut analysis technique is described to identify predators of Lygus hesperus (Knight), a significant pest of many crops. The technique is unique because it can pinpoint which life stage of the pest was consumed. Sentinel egg masses designed to mimic the endophytic egg-laying behavior of L. hesperus were marked with rabbit serum, while third instar and adult L. hesperus were marked with chicken and rat sera, respectively. Then, the variously labeled L. hesperus life stages were introduced into field cages that enclosed the native arthropod population inhabiting an individual cotton plant. After a 6-h exposure period, the predator assemblage, including the introduced and native L. hesperus population, in each cage were counted and had their gut contents examined for the presence of the variously marked L. hesperus life stages by a suite of serum-specific enzyme-linked immunosorbent assays (ELISA). The whole-plant sampling scheme revealed that Geocoris punticpes (Say) and Geocoris pallens Stal (Hemiptera: Geocoridae) and members of the spider complex were the numerically dominant predator taxa in the cotton field. The gut content analyses also showed that these two taxa appeared to be the most prolific predators of the L. hesperus nymph stage. Other key findings include that Collops vittatus (Say) (Coleoptera: Melyridae) and Solenopsis xyloni McCook (Hymenoptera: Formicidae) appear to be adept at finding and feeding on the cryptic L. hesperus egg stage, and that L. hesperus, albeit at low frequencies, engaged in cannibalism. The methods described here could be adapted for studying life stage-specific feeding preferences for a wide variety of arthropod taxa.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Hemípteros/inmunología , Conducta Predatoria , Animales , Hormigas , Escarabajos , Huevos , Conducta Alimentaria , Ninfa/inmunología , Arañas
10.
Ann R Coll Surg Engl ; 106(4): 321-328, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38555869

RESUMEN

Genomics is a crucial part of managing surgical disease. This review focuses on some of the genomic advances that are available now and looks to the future of their application in surgical practice. Whole-genome sequencing enables unbiased coverage across the entire human genome of approximately three billion base pairs. Newer technologies, such as those that permit long-read sequence analysis, provide additional information in longer phased fragment and base pair epigenomic (methylomic) data. Whole-genome sequencing is currently available in England for cancers in children, teenagers and young adults, central nervous system tumours, sarcoma and haematological malignancies. Circulating tumour DNA (ctDNA), immunotherapy and pharmacogenomics have emerged as groundbreaking approaches in the field of cancer treatment. These are now revolutionising the way oncologists and surgeons approach curative cancer surgery. Cancer vaccines offer an innovative approach to reducing recurrence after surgery by priming the immune system to trigger an immune response. The Cancer Vaccine Launch Pad project facilitates cancer vaccine studies in England. The BNT122-01 trial is recruiting patients with ctDNA-positive high-risk colorectal cancer after surgery to assess the impact of cancer vaccines. The evolving landscape of cancer treatment demands a dynamic and integrated approach from the surgical multidisciplinary team. Immunotherapy, ctDNA, pharmacogenomics, vaccines, mainstreaming and whole-genome sequencing are just some of the innovations that have the potential to redefine the standards of care. The continued exploration of these innovative diagnostics and therapies, the genomic pathway evolution and their application in diverse cancer types highlights the transformative impact of precision medicine in surgery.


Asunto(s)
Vacunas contra el Cáncer , ADN Tumoral Circulante , Neoplasias , Cirujanos , Niño , Humanos , Adolescente , ADN Tumoral Circulante/genética , Genómica
11.
Gene Protein Dis ; 3(1)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38766604

RESUMEN

The D2 dopamine receptor (DRD2) gene has garnered substantial attention as one of the most extensively studied genes across various neuropsychiatric disorders. Since its initial association with severe alcoholism in 1990, particularly through the identification of the DRD2 Taq A1 allele, numerous international investigations have been conducted to elucidate its role in different conditions. As of February 22, 2024, there are 5485 articles focusing on the DRD2 gene listed in PUBMED. There have been 120 meta-analyses with mixed results. In our opinion, the primary cause of negative reports regarding the association of various DRD2 gene polymorphisms is the inadequate screening of controls, not adequately eliminating many hidden reward deficiency syndrome behaviors. Moreover, pleiotropic effects of DRD2 variants have been identified in neuropsychologic, neurophysiologic, stress response, social stress defeat, maternal deprivation, and gambling disorder, with epigenetic DNA methylation and histone post-translational negative methylation identified as discussed in this article. There are 70 articles listed in PUBMED for DNA methylation and 20 articles listed for histone methylation as of October 19, 2022. For this commentary, we did not denote DNA and/or histone methylation; instead, we provided a brief summary based on behavioral effects. Based on the fact that Blum and Noble characterized the DRD2 Taq A1 allele as a generalized reward gene and not necessarily specific alcoholism, it now behooves the field to find ways to either use effector moieties to edit the neuroepigenetic insults or possibly harness the idea of potentially removing negative mRNA-reduced expression by inducing "dopamine homeostasis."

12.
Plant Dis ; 97(12): 1657, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30716820

RESUMEN

Rhizoctonia solani causes economically important diseases on potatoes and sugarbeet throughout the world (2). R. solani is a species complex of 13 anastomosis groups (AGs) of which R. solani AG3-PT is most commonly associated with potato and AG2-2 and AG4 with sugarbeet. However, several AGs, including AG2-2 and AG4, have been recorded causing potato diseases (2,3). In summer 2012, plants in potato fields in Idaho were sampled for R. solani. Isolations were attempted from symptomatic plants. DNA extracted from the resulting pure Rhizoctonia cultures was screened using a real-time PCR assay for AG3-PT (3). For the isolates that tested negative for AG3-PT, AG was determined by amplifying and sequencing the rDNA internal transcribed spacer (ITS) region using the primers ITS5 (5'-GGAAGTAAAAGTCGTAACAAGG-3') and ITS4 (5'-TCCTCCGCTTATTGATATGC-3'). The resulting sequences of two isolates (isolates 204 and 206, GenBank Accession No. KC782951) shared 99% identity with other AG-A isolates (AY927358 and AY927356). Koch's postulates were confirmed for isolate 206 by placing five 10-mm plugs, from 10-day-old potato dextrose agar (PDA) cultures, onto the surface of a soil-less potting mix (composed of peat moss, perlite, and sand) of 1-liter pots, where non-inoculated PDA plugs served as a control. Each pot contained a 'Rosara' seed tuber or three ungerminated (BETASEED - BTS 27RR10) sugarbeet seeds (n = 5). Pots were incubated in a glasshouse between 18 and 22°C for 1 month and then assessed for disease. For potatoes, a pigmented necrosis was observed at the soil interface in 88% of the stems and plants were stunted relative to the non-inoculated controls. A significant reduction in root growth was observed in 60% of the germinated sugarbeet plants. Control plants of both potatoes and beets were asymptomatic. For reisolation, 1-cm sections were taken from each potato stem and germinated beet plant, surface sterilized, and placed on alkaline water agar. The reisolated fungi were identified using morphology and a subset was confirmed by sequencing. Isolate 206 was successfully recovered from 84% of the potato stems and from 20% of the sugarbeet seedlings. In a similar experiment, 2-month-old potato and sugarbeet plants were inoculated using 50 g of autoclaved barley grains (inoculated with isolate 206) per 1-liter pot. Between 40 and 60% of inoculated plants appeared stunted in both cases. Pigmented necrosis was observed at the soil interface on 45% of the potato stems and reduced root growth was observed in the 50% of the sugarbeet plants. Control plants were asymptomatic. To our knowledge, this is the first report of the binucleate AG-A causing disease in Idaho on potato stems. BNR species have previously been isolated from potato (4) and sugarbeet plants (1). The binucleate Rhizoctonia AG-A caused disease on potato stems and sugarbeet roots and was readily reisolated. Since sugarbeet is commonly grown in rotation with potato in Idaho, such a rotation could increase the risk of soilborne infection to either crop by AG-A. It is known that AGs can differ in fungicide sensitivity (2), and thus a knowledge of which AGs may be present is important when considering disease management strategies. References: (1) C. A. Strausbaugh et al. Can. J. Plant Pathol. 33:210, 2011. (2) L. Tsror. Biology, Epidemiology and Management of Rhizoctonia solani on Potato 158:649, 2010. (3) J. Woodhall et al. Eur. J. Plant Pathol. 136:273, 2013. (4) Y. G. Yang and X. H. Wu. Plant Dis. 97:1246, 2013.

13.
Plant Dis ; 97(12): 1655, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30716825

RESUMEN

Early blight of potato (Solanum tuberosum) is caused by Alternaria solani and occurs annually in Michigan. If left uncontrolled, it can result in yield losses exceeding 20% and impact stored potatoes. The disease is commonly managed using succinate dehydrogenase inhibitor (SDHI) fungicides (1). Unfortunately, recent studies have shown that SDHI resistance has increased dramatically over the past 2 years in A. solani populations (1,2). To investigate the occurrence of SDHI resistance in Michigan, potato leaves with early blight symptoms were collected from fields in Montcalm and Ionia counties, MI, in 2012. To obtain A. solani isolates from leaves, small pieces of leaf tissue (5 × 5 mm) were excised from the center of lesions and transferred on to water agar. Plates were incubated at 25°C overnight to allow conidia to germinate. Single germinated A. solani conidia were transferred to potato dextrose agar (PDA) and incubated at 25°C for 7 days. The identity of cultures was confirmed by colony and conidial morphology (3). Nineteen A. solani isolates were obtained and each was screened for sensitivity to the SDHI fungicides boscalid, penthiopyrad, and fluopyram, using a 50 ppm discriminatory dose based on EC50 values previously determined (2). Mycelial plugs (~5.5 mm) were transferred to amended and non-amended PDA plates that were incubated at 25°C for 7 days. An isolate was considered highly resistant if fungal growth relative to control plates exceeded 50%, moderately resistant if it was between 35 and 50%, and sensitive if it was less than 35% (2). A sensitive A. solani isolate (AS11) from Bonners Ferry, ID, was used as a control in these experiments. Of all isolates tested, 11% were highly resistant to both boscalid and penthiopyrad and 5% were moderately resistant to both fungicides, 21% were moderately resistant to penthiopyrad alone, and the remaining isolates (84 and 68% respectively) were sensitive to the two fungicides. None of the isolates tested were resistant to fluopyram. Recently, two major mutations, H227R in SdhB and H133R in SdhD, have been identified in highly resistant A. solani isolates in Idaho (2). Because the majority of the identified mutations occur near the 3' end of each subunit, this region was amplified and sequenced using the following primer sets: SdhB (5'-TACTGGTGGAACCAGGAGGAGTA-3' and 5'-CATACCACTCTAGGTGAAG-3'), SdhC (5'-CCAAATCACCTGGTACGCCTCG-3' and 5'-TCATCCGAGGAAGGTGTAGTAAAGGCTG-3'), and SdhD (5'-CCGACTCTATTCTCTGCGCCCT-3' and 5'-CTCGAAAGAGTAGAGGGCAAGACCCA-3'). In this study, all of the isolates that were highly resistant to both boscalid and penthiopyrad were found to contain the H133R mutation in SdhD, which correlated with the strongest resistance phenotype. To our knowledge, this is the first report of resistance to SDHI fungicides in populations of A. solani on potato in Michigan. These data are concerning as they indicate that the highly resistant isolates have already developed cross-resistance between boscalid and penthiopyrad, despite penthiopyrad not yet having regular use in Michigan. Although all of the isolates tested were sensitive to fluopyram, the discovery of isolates resistant to boscalid and penthiopyrad suggests that all SDHI fungicides should be considered at high risk of resistance development in Michigan. References: (1) K. Fairchild et al. Crop Prot. 49:31, 2013. (2) T. Miles et al. Plant Pathol. doi: 10.1111/ppa.12077, 2013. (3) P. Wharton et al. Plant Dis. 96:454, 2012.

14.
Polit Behav ; : 1-21, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36743232

RESUMEN

Americans of all political stripes abstractly support most of the rights and liberties guaranteed by the U.S. Constitution, such as free expression. Yet, we argue that attitudes regarding the basic mechanics of civil liberties-e.g., from whom they are protections-are divided across partisan lines. Because of elite rhetoric, we hypothesize that Republicans are more likely than Democrats to perceive rights violations, often by non-government entities (generally incapable of violations), and that they will perceive rights as under threat with greater frequency. Using a survey containing unique questions about rights, we first demonstrate that a large majority of the mass public has fixed preference structures regarding rights, suggesting that attitudes about liberties are not merely error-ridden, top-of-the-head assessments. These preference structures differ for Democrats and Republicans. Next, we find support for our theory that attitudes regarding rights, from whom they are protective, and their level of protectiveness are asymmetric across partisanship. Beyond implications for citizens' democratic capacities, our results also highlight potential concerns about the influence of partisan bias in demands on leaders regarding rights protection. Supplementary Information: The online version contains supplementary material available at 10.1007/s11109-023-09860-3.

15.
Aquat Toxicol ; 260: 106584, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37267806

RESUMEN

Estrogenic endocrine disrupting chemicals (EEDC) have been suspected to impact offspring in a transgenerational manner via modifications of the germline epigenome in the directly exposed generations. A holistic assessment of the concentration/ exposure duration-response, threshold level, and critical exposure windows (parental gametogenesis and embryogenesis) for the transgenerational evaluation of reproduction and immune compromise concomitantly will inform the overall EEDC exposure risk. We conducted a multigenerational study using the environmental estrogen, 17α-ethinylestradiol (EE2), and the marine laboratory model fish Oryzias melastigma (adult, F0) and their offspring (F1-F4) to identify transgenerationally altered offspring generations and phenotype persistence. Three exposure scenarios were used: short parental exposure, long parental exposure, and a combined parental and embryonic exposure using two concentrations of EE2 (33ng/L, 113ng/L). The reproductive fitness of fish was evaluated by assessing fecundity, fertilization rate, hatching success, and sex ratio. Immune competence was assessed in adults via a host-resistance assay. EE2 exposure during both parental gametogenesis and embryogenesis was found to induce concentration/ exposure duration-dependent transgenerational reproductive effects in the unexposed F4 offspring. Furthermore, embryonic exposure to 113 ng/L EE2 induced feminization of the directly exposed F1 generation, followed by subsequent masculinization of the F2 and F3 generations. A sex difference was found in the transgenerationally impaired reproductive output with F4 females being sensitive to the lowest concentration of EE2 (33 ng/L) upon long-term ancestral parent exposure (21 days). Conversely, F4 males were affected by ancestral embryonic EE2 exposure. No definitive transgenerational impacts on immune competence were identified in male or female offspring. In combination, these results indicate that EEDCs can be transgenerational toxicants that may negatively impact the reproductive success and population sustainability of fish populations.


Asunto(s)
Oryzias , Contaminantes Químicos del Agua , Animales , Femenino , Masculino , Oryzias/fisiología , Aptitud Genética , Contaminantes Químicos del Agua/toxicidad , Reproducción , Fertilidad , Etinilestradiol/toxicidad
16.
Front Mol Biosci ; 10: 1160851, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37577751

RESUMEN

Background: Tissue fibrosis is a major healthcare burden that affects various organs in the body for which no effective treatments exist. An underlying, emerging theme across organs and tissue types at early stages of fibrosis is the activation of pericytes and/or fibroblasts in the perivascular space. In hepatic tissue, it is well known that liver sinusoidal endothelial cells (EC) help maintain the quiescence of stellate cells, but whether this phenomenon holds true for other endothelial and perivascular cell types is not well studied. Methods: The goal of this work was to develop an organ-on-chip microvascular model to study the effect of EC co-culture on the activation of perivascular cells perturbed by the pro-fibrotic factor TGFß1. A high-throughput microfluidic platform, PREDICT96, that was capable of imparting physiologically relevant fluid shear stress on the cultured endothelium was utilized. Results: We first studied the activation response of several perivascular cell types and selected a cell source, human dermal fibroblasts, that exhibited medium-level activation in response to TGFß1. We also demonstrated that the PREDICT96 high flow pump triggered changes in select shear-responsive factors in human EC. We then found that the activation response of fibroblasts was significantly blunted in co-culture with EC compared to fibroblast mono-cultures. Subsequent studies with conditioned media demonstrated that EC-secreted factors play at least a partial role in suppressing the activation response. A Luminex panel and single cell RNA-sequencing study provided additional insight into potential EC-derived factors that could influence fibroblast activation. Conclusion: Overall, our findings showed that EC can reduce myofibroblast activation of perivascular cells in response to TGFß1. Further exploration of EC-derived factors as potential therapeutic targets in fibrosis is warranted.

17.
Plant Dis ; 96(11): 1621-1628, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30727456

RESUMEN

Powdery mildew, caused by Erysiphe necator, is the most common and destructive disease of grapes (Vitis spp.) worldwide. In Michigan, it is primarily controlled with fungicides, including strobilurins (quinone outside inhibitors [QoIs]). Within the United States, resistance to this class of fungicides has been reported in E. necator populations in some east coast states. Among 12 E. necator isolates collected from five Michigan vineyards in 2008, one carried the G143A single-nucleotide mutation responsible for QoI resistance. This isolate was confirmed to be resistant in a conidium germination assay on water agar amended with trifloxystrobin at 0.001, 0.01, 0.1, 1, 10, or 100 µg/ml and salicylhydroxamic acid (100 mg/liter). The mutant isolate was able to germinate on media amended with 100 µg/ml trifloxystrobin, whereas a representative wild-type isolate did not germinate at concentrations higher than 0.1 µg/ml. In 2009, 172 isolates were collected from a total of 21 vineyards (juice and wine grapes): three vineyards with no fungicide application history (baseline sites), six research vineyards, and 12 commercial vineyards. QoI resistance was defined as the effective concentration that inhibited 50% of conidial germination (EC50) > 1 µg/ml. Isolates from baseline sites had EC50 values mostly below 0.01 µg/ml, while isolates that were highly resistant to trifloxystrobin (EC50 > 100 µg/ml) occurred in five research and three commercial wine grape vineyards at frequencies of 40 to 100% and 25 to 75% of the isolates, respectively. The G143A mutation was detected in every isolate with an EC50 > 1 µg/ml. These results suggest that fungicide resistance may play a role in suboptimal control of powdery mildew observed in some Michigan vineyards and emphasizes the need for continued fungicide resistance management.

18.
Polit Behav ; 44(2): 937-960, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35001995

RESUMEN

What explains popular support for political violence in the contemporary United States, particularly the anti-institutional mob that attacked the U.S. Capitol in January 2021? Recent scholarship gives reason to suspect that a constellation of beliefs known as "Christian nationalism" may be associated with support for such violence. We build on this work, arguing that religious ideologies like Christian nationalism should be associated with support for violence, conditional on several individual characteristics that can be inflamed by elite cues. We turn to three such factors long-studied by scholars of political violence: perceived victimhood, reinforcing racial and religious identities, and support for conspiratorial information sources. Each can be exacerbated by elite cues, thus translating individual beliefs in Christian nationalism into support for political violence. We test this approach with original survey data collected in the wake of the Capitol attacks. We find that all the identified factors are positively related to each other and support for the Capitol riot; moreover, the relationship between Christian nationalism and support for political violence is sharply conditioned by white identity, perceived victimhood, and support for the QAnon movement. These results suggest that religion's role in contemporary right-wing violence is embedded with non-religious factors that deserve further scholarly attention in making sense of support for political violence. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11109-021-09758-y.

19.
Polit Behav ; 44(4): 1583-1609, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33424069

RESUMEN

Despite growing recognition among journalists and political pundits, the concept of victimhood has been largely ignored in empirical social science research. In this article, we develop a theory about, and use unique nationally-representative survey data to estimate, two manifestations of victimhood: an egocentric one entailing only perceptions of one's own victimhood, and one focused on blaming "the system." We find that these manifestations of victimhood cut across partisan, ideological, and sociodemographic lines, suggesting that feelings of victimhood are confined to neither "actual" victims nor those partisans on the losing side of elections. Moreover, both manifestations of victimhood, while related to candidate support and various racial attitudes, prove to be distinct from related psychological constructs, such as (collective) narcissism, system justification, and relative deprivation. Finally, an experiment based on candidate rhetoric demonstrates that some political messaging can make supporters feel like victims, which has consequences for subsequent attitudes and behavior.

20.
Front Microbiol ; 13: 831790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464924

RESUMEN

Understanding mechanisms shaping distributions and interactions of soil microbes is essential for determining their impact on large scale ecosystem services, such as carbon sequestration, climate regulation, waste decomposition, and nutrient cycling. As the functional unit of soil ecosystems, we focus our attention on the spatial structure of soil macroaggregates. Emulating this complex physico-chemical environment as a patchy habitat landscape we investigate on-chip the effect of changing the connectivity features of this landscape as Escherichia coli forms a metapopulation. We analyze the distributions of E. coli occupancy using Taylor's law, an empirical law in ecology which asserts that the fluctuations in populations is a power law function of the mean. We provide experimental evidence that bacterial metapopulations in patchy habitat landscapes on microchips follow this law. Furthermore, we find that increased variance of patch-corridor connectivity leads to a qualitative transition in the fluctuation scaling. We discuss these results in the context of the spatial ecology of microbes in soil.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA