Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nucleic Acids Res ; 45(14): 8378-8391, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-28637278

RESUMEN

Trypanosoma brucei, the causative agent of sleeping sickness (Human African Trypanosomiasis, HAT), contains a kinetoplast with the mitochondrial DNA (kDNA), comprising of >70% AT base pairs. This has prompted studies of drugs interacting with AT-rich DNA, such as the N-phenylbenzamide bis(2-aminoimidazoline) derivatives 1 [4-((4,5-dihydro-1H-imidazol-2-yl)amino)-N-(4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)benzamide dihydrochloride] and 2 [N-(3-chloro-4-((4,5-dihydro-1H-imidazol-2-yl)amino)phenyl)-4-((4,5-dihydro-1H-imidazol-2-yl)amino)benzamide] as potential drugs for HAT. Both compounds show in vitro effects against T. brucei and in vivo curative activity in a mouse model of HAT. The main objective was to identify their cellular target inside the parasite. We were able to demonstrate that the compounds have a clear effect on the S-phase of T. brucei cell cycle by inflicting specific damage on the kinetoplast. Surface plasmon resonance (SPR)-biosensor experiments show that the drug can displace HMG box-containing proteins essential for kDNA function from their kDNA binding sites. The crystal structure of the complex of the oligonucleotide d[AAATTT]2 with compound 1 solved at 1.25 Å (PDB-ID: 5LIT) shows that the drug covers the minor groove of DNA, displaces bound water and interacts with neighbouring DNA molecules as a cross-linking agent. We conclude that 1 and 2 are powerful trypanocides that act directly on the kinetoplast, a structure unique to the order Kinetoplastida.


Asunto(s)
Emparejamiento Base , ADN de Cinetoplasto/genética , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/metabolismo , Animales , Sitios de Unión/genética , Cristalografía por Rayos X , ADN de Cinetoplasto/química , ADN de Cinetoplasto/metabolismo , Humanos , Ratones , Conformación de Ácido Nucleico , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Resonancia por Plasmón de Superficie , Tripanocidas/química , Tripanocidas/metabolismo , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
2.
Nat Commun ; 13(1): 1278, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277487

RESUMEN

Yeast Cadmium Factor 1 (Ycf1) sequesters heavy metals and glutathione into the vacuole to counter cell stress. Ycf1 belongs to the ATP binding cassette C-subfamily (ABCC) of transporters, many of which are regulated by phosphorylation on intrinsically-disordered domains. The regulatory mechanism of phosphorylation is still poorly understood. Here, we report two cryo-EM structures of Ycf1 at 3.4 Å and 4.0 Å resolution in inward-facing open conformations that capture previously unobserved ordered states of the intrinsically disordered regulatory domain (R-domain). R-domain phosphorylation is clearly evident and induces a topology promoting electrostatic and hydrophobic interactions with Nucleotide Binding Domain 1 (NBD1) and the Lasso motif. These interactions stay constant between the structures and are related by rigid body movements of the NBD1/R-domain complex. Biochemical data further show R-domain phosphorylation reorganizes the Ycf1 architecture and is required for maximal ATPase activity. Together, we provide insights into how R-domains control ABCC transporter activity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas de Saccharomyces cerevisiae , Transportadoras de Casetes de Unión a ATP/metabolismo , Cadmio/metabolismo , Proteínas de Transporte de Membrana , Fosforilación , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
J Mol Biol ; 433(16): 166834, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-33524413

RESUMEN

The ATP binding cassette (ABC) family of transporters moves small molecules (lipids, sugars, peptides, drugs, nutrients) across membranes in nearly all organisms. Transport activity requires conformational switching between inward-facing and outward-facing states driven by ATP-dependent dimerization of two nucleotide binding domains (NBDs). The mechanism that connects ATP binding and hydrolysis in the NBDs to conformational changes in a substrate binding site in the transmembrane domains (TMDs) is currently an outstanding question. Here we use sequence coevolution analyses together with biochemical characterization to investigate the role of a highly conserved region in intracellular loop 1 we define as the GRD motif in coordinating domain rearrangements in the heterodimeric peptide exporter from Thermus thermophilus, TmrAB. Mutations in the GRD motif alter ATPase activity as well as transport. Disulfide crosslinking, evolutionary trace, and evolutionary coupling analysis reveal that these effects are likely due to the destabilization of a network in which the GRD motif in TmrA bridges residues of the Q-loop, X-loop, and ABC motif in the NBDs to residues in the TmrAB peptide substrate binding site, thus providing an avenue for conformational coupling. We further find that disruption of this network in TmrA versus TmrB has different functional consequences, hinting at an intrinsic asymmetry in heterodimeric ABC transporters extending beyond that of the NBDs. These results support a mechanism in which the GRD motifs help coordinate a transition to an outward open conformation, and each half of the transporter likely plays a different role in the conformational cycle of TmrAB.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencias de Aminoácidos , Secuencia Conservada , Modelos Moleculares , Conformación Proteica , Transportadoras de Casetes de Unión a ATP/genética , Proteínas Bacterianas , Sitios de Unión , Hidrólisis , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Relación Estructura-Actividad , Thermus thermophilus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA