Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33853948

RESUMEN

Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive. In this regard, transient receptor potential vanilloid 4 (TRPV4) cation channels are known to be important Ca2+ entry pathways in multiple cell types. Here, we provide direct evidence supporting Ca2+ entry through TRPV4 channels in human TM cells and show that TRPV4 channels in TM cells can be activated by increased fluid flow/shear stress. TM-specific TRPV4 channel knockout in mice elevated IOP, supporting a crucial role for TRPV4 channels in IOP regulation. Pharmacological activation of TRPV4 channels in mouse eyes also improved AH outflow facility and lowered IOP. Importantly, TRPV4 channels activated endothelial nitric oxide synthase (eNOS) in TM cells, and loss of eNOS abrogated TRPV4-induced lowering of IOP. Remarkably, TRPV4-eNOS signaling was significantly more pronounced in TM cells compared to Schlemm's canal cells. Furthermore, glaucomatous human TM cells show impaired activity of TRPV4 channels and disrupted TRPV4-eNOS signaling. Flow/shear stress activation of TRPV4 channels and subsequent NO release were also impaired in glaucomatous primary human TM cells. Together, our studies demonstrate a central role for TRPV4-eNOS signaling in IOP regulation. Our results also provide evidence that impaired TRPV4 channel activity in TM cells contributes to TM dysfunction and elevated IOP in glaucoma.


Asunto(s)
Glaucoma de Ángulo Abierto/fisiopatología , Canales Catiónicos TRPV/metabolismo , Animales , Humor Acuoso/fisiología , Canales de Calcio/metabolismo , Femenino , Glaucoma/metabolismo , Glaucoma/fisiopatología , Glaucoma de Ángulo Abierto/metabolismo , Humanos , Presión Intraocular/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/metabolismo , Esclerótica/metabolismo , Transducción de Señal/fisiología , Canales Catiónicos TRPV/fisiología , Malla Trabecular/fisiología
2.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542305

RESUMEN

We tested five chemically and metabolically stable prostaglandin (PG) receptor agonists in a mouse model of dexamethasone-induced ocular hypertension (OHT). Whilst all compounds significantly (p < 0.05, ANOVA) lowered intraocular pressure (IOP) after twice-daily bilateral topical ocular dosing (5 µg/dose) over three weeks, the time course and magnitude of the responses varied. The onset of action of NS-304 (IP-PG receptor agonist) and rivenprost (EP4-PG receptor agonist) was slower than that of misoprostol (mixed EP2/EP3/EP4-PG receptor agonist), PF-04217329 (EP2-PG receptor agonist), and butaprost (EP2-PG receptor agonist). The rank order of IOP-lowering efficacies aligned with the onset of actions of these compounds. Peak IOP reductions relative to vehicle controls were as follows: misoprostol (74.52%) = PF-04217329 (74.32%) > butaprost (65.2%) > rivenprost (58.4%) > NS-304 (55.3%). A literature survey indicated that few previously evaluated compounds (e.g., latanoprost, timolol, pilocarpine, brimonidine, dorzolamide, cromakalim analog (CKLP1), losartan, tissue plasminogen activator, trans-resveratrol, sodium 4-phenyl acetic acid, etc.) in various animal models of steroid-induced OHT were able to match the effectiveness of misoprostol, PF-04217329 or butaprost. Since a common feature of the latter compounds is their relatively high affinity and potency at the EP2-PG receptor sub-type, which activates the production of intracellular cAMP in target cells, our studies suggest that drugs selective for the EP2-PG receptor may be suited to treat corticosteroid-induced OHT.


Asunto(s)
Acetamidas , Acetatos , Misoprostol , Hipertensión Ocular , Pirazinas , Sulfonamidas , Animales , Ratones , Misoprostol/farmacología , Misoprostol/uso terapéutico , Activador de Tejido Plasminógeno , Hipertensión Ocular/inducido químicamente , Hipertensión Ocular/tratamiento farmacológico , Receptores de Prostaglandina , Subtipo EP4 de Receptores de Prostaglandina E , Esteroides
3.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35805889

RESUMEN

Glaucoma is a multifactorial disease leading to irreversible blindness. Primary open-angle glaucoma (POAG) is the most common form and is associated with the elevation of intraocular pressure (IOP). Reduced aqueous humor (AH) outflow due to trabecular meshwork (TM) dysfunction is responsible for IOP elevation in POAG. Extracellular matrix (ECM) accumulation, actin cytoskeletal reorganization, and stiffening of the TM are associated with increased outflow resistance. Transforming growth factor (TGF) ß2, a profibrotic cytokine, is known to play an important role in the development of ocular hypertension (OHT) in POAG. An appropriate mouse model is critical in understanding the underlying molecular mechanism of TGFß2-induced OHT. To achieve this, TM can be targeted with recombinant viral vectors to express a gene of interest. Lentiviruses (LV) are known for their tropism towards TM with stable transgene expression and low immunogenicity. We, therefore, developed a novel mouse model of IOP elevation using LV gene transfer of active human TGFß2 in the TM. We developed an LV vector-encoding active hTGFß2C226,228S under the control of a cytomegalovirus (CMV) promoter. Adult C57BL/6J mice were injected intravitreally with LV expressing null or hTGFß2C226,228S. We observed a significant increase in IOP 3 weeks post-injection compared to control eyes with an average delta change of 3.3 mmHg. IOP stayed elevated up to 7 weeks post-injection, which correlated with a significant drop in the AH outflow facility (40.36%). Increased expression of active TGFß2 was observed in both AH and anterior segment samples of injected mice. The morphological assessment of the mouse TM region via hematoxylin and eosin (H&E) staining and direct ophthalmoscopy examination revealed no visible signs of inflammation or other ocular abnormalities in the injected eyes. Furthermore, transduction of primary human TM cells with LV_hTGFß2C226,228S exhibited alterations in actin cytoskeleton structures, including the formation of F-actin stress fibers and crossed-linked actin networks (CLANs), which are signature arrangements of actin cytoskeleton observed in the stiffer fibrotic-like TM. Our study demonstrated a mouse model of sustained IOP elevation via lentiviral gene delivery of active hTGFß2C226,228S that induces TM dysfunction and outflow resistance.


Asunto(s)
Glaucoma de Ángulo Abierto , Hipertensión Ocular , Actinas/metabolismo , Animales , Humor Acuoso/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/metabolismo , Presión Intraocular , Ratones , Ratones Endogámicos C57BL , Hipertensión Ocular/genética , Hipertensión Ocular/metabolismo , Malla Trabecular/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo
4.
Mol Vis ; 27: 37-49, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33633438

RESUMEN

Purpose: Glaucoma is a neurodegenerative disease of the eye with an estimated prevalence of more than 111.8 million patients worldwide by 2040, with at least 6 to 8 million projected to become bilaterally blind. Clinically, the current method of slowing glaucomatous vision loss is to reduce intraocular pressure (IOP). In this manuscript, we describe the in vitro cytoprotective and in vivo long lasting IOP-lowering activity of the poly D, L-lactic-co-glycolic acid (PLGA) nanoparticle-encapsulated hybrid compound SA-2, possessing nitric oxide (NO) donating and superoxide radical scavenging functionalities. Methods: Previously characterized primary human trabecular meshwork (hTM) cells were used for the study. hTM cells were treated with SA-2 (100 µM, 200 µM, and 1,000 µM), SA-2 PLGA-loaded nanosuspension (SA-2 NPs, 0.1%), or vehicle for 30 min. Cyclic guanosine monophosphate (cGMP) and super oxide dismutase (SOD) levels were analyzed using commercial kits. In another experiment, hTM cells were pretreated with tert-butyl hydrogen peroxide (TBHP, 300 µM) for 30 min followed by treatment with escalating doses of SA-2 for 24 h, and CellTiter 96 cell proliferation assay was performed. For the biodistribution study, the cornea, aqueous humor, vitreous humor, retina, choroid, and sclera were collected after 1 h of administration of a single eye drop (30 µl) of SA-2 NPs (1% w/v) formulated in PBS to rat (n = 6) eyes. Compound SA-2 was quantified using high performance liquid chromatography /mass spectrometry (HPLC/MS). For the IOP-lowering activity study, a single SA-2 NPs (1%) eye drop was instilled in normotensive rats eyes and in the IOP-elevated rat eyes (n = 3/group, in the Morrison model of glaucoma), or Ad5TGFß2-induced ocular hypertensive (OHT) mouse eyes (n = 5/group). IOP was measured at various time points up to 72 h, and the experiment was repeated in triplicate. Mouse aqueous humor outflow facility was determined with multiple flow-rate infusion and episcleral venous pressure estimated with manometry. Results: SA-2 upregulated cGMP levels (six- to ten-fold) with an half maximal effective concentration (EC50) of 20.3 µM in the hTM cells and simultaneously upregulated (40-fold) the SOD enzyme when compared with the vehicle-treated hTM cells. SA-2 also protected hTM cells from TBHP-induced decrease in cell survival with an EC50 of 0.38 µM. A single dose of slow-release SA-2 NPs (1% w/v) delivered as an eye drop significantly lowered IOP (by 30%) in normotensive and OHT rodent eyes after 3 h post-dose, with the effect lasting up to 72 h. A statistically significant increase in aqueous outflow facility and a decrease in episcleral venous pressure was observed in rodents at this dose at 54 h. Conclusions: Hybrid compound SA-2 upregulated cGMP in hTM cells, increased outflow facility and decreased IOP in rodent models of OHT. Compound SA-2 possessing an antioxidant moiety provided additive cytoprotective activity to oxidatively stressed hTM cells by scavenging reactive oxygen species (ROS) and increasing SOD enzyme activity. Additionally, the PLGA nanosuspension formulation (SA-2 NPs) provided longer duration of IOP-lowering activity (up to 3 days) in comparison with the free non-encapsulated SA-2 drug. The data have implications for developing novel, non-prostaglandin therapeutics for IOP-lowering and cytoprotective effects with the possibility of an eye drop dosing regimen of once every 3 days for patients with glaucoma.


Asunto(s)
Antihipertensivos/uso terapéutico , Modelos Animales de Enfermedad , Presión Intraocular/efectos de los fármacos , Hipertensión Ocular/tratamiento farmacológico , Piperidinas/uso terapéutico , Malla Trabecular/efectos de los fármacos , Administración Oftálmica , Adulto , Anciano de 80 o más Años , Animales , Antihipertensivos/farmacocinética , Antihipertensivos/farmacología , Humor Acuoso/fisiología , Disponibilidad Biológica , Células Cultivadas , GMP Cíclico/metabolismo , Portadores de Fármacos , Femenino , Depuradores de Radicales Libres/farmacocinética , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Glicolatos/química , Humanos , Masculino , Ratones Endogámicos C57BL , Donantes de Óxido Nítrico/farmacocinética , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/uso terapéutico , Hipertensión Ocular/metabolismo , Soluciones Oftálmicas , Piperidinas/farmacocinética , Piperidinas/farmacología , Ratas , Ratas Endogámicas BN , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Esclerótica/irrigación sanguínea , Superóxido Dismutasa/metabolismo , Distribución Tisular , Malla Trabecular/metabolismo , Presión Venosa/fisiología
5.
Exp Eye Res ; 188: 107763, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31421135

RESUMEN

Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness, and individuals with ocular hypertension are at risk to develop POAG. Currently, the only modifiable risk factor for glaucoma progression is lowering of intraocular pressure (IOP). A novel mechanism for lowering IOP involves activation of the type B natriuretic peptide receptor (NPR-B), the naturally occurring agonist of which is C-type natriuretic peptide (CNP). Being a cyclic peptide of 22 amino acids, CNP does not readily penetrate the cornea and its ocular hypotensive effect requires intraocular injection. TAK-639 is a synthetic, cornea-permeable, 9-amino acid CNP analog has been studied for the treatment of ocular hypertension and POAG. We assessed TAK-639 in a receptor binding profile and the effects of TAK-639 on NPR-B-mediated cyclic GMP production in cultured transformed human trabecular meshwork (TM) cells (GTM-3). We also evaluated the effects of topical ocular administration of TAK-639 on mouse IOP and aqueous humor dynamics. Among 89 non-natriuretic peptide receptors, transporters, and channels evaluated, TAK-639 at 10 µM displaced ligand binding by more than 50% to only two receptors: the type 2 angiotensin receptor (IC50 = 8.2 µM) and the cholecystokinin A receptor (IC50 = 25.8 µM). In vitro, TAK-639 selectively activates NPR-B (EC50 = 61 ±â€¯11 nM; GTM-3 cells) relative to NPR-A (EC50 = 2179 ±â€¯670 nM; 293T cells). In vivo, TAK-639 lowered mouse IOP by three mechanisms: increase in aqueous humor outflow facility (C), reduction in the aqueous humor formation rate (Fin), and reduction in episcleral venous pressure (Pe). The maximum mean IOP decreases from baseline were -12.1%, -21.0%, and -36.1% for 0.1%, 0.3%, and 0.6% doses of TAK-639, respectively. Maximum IOP-lowering effect was seen at 2 h, and the duration of action was >6 h. With TAK-639 0.6%, at 2 h post-dose, aqueous outflow facility (C) increased by 155.8%, Fin decreased by 41.0%, the uveoscleral outflow rate (Fu) decreased by 52.6%, and Pe decreased by 31.5% (all p < 0.05). No ocular adverse effects were observed. TAK-639 is an efficacious IOP-lowering agent, with a unique combination of mechanisms of action on both aqueous formation and aqueous outflow facility. Further study of this mechanism of treatment may optimize pharmacologic outcomes and provide disease management in patients with POAG and ocular hypertension.


Asunto(s)
Humor Acuoso/fisiología , Presión Intraocular/efectos de los fármacos , Péptido Natriurético Tipo-C/análogos & derivados , Péptido Natriurético Tipo-C/farmacología , Malla Trabecular/efectos de los fármacos , Administración Oftálmica , Animales , Línea Celular Transformada , GMP Cíclico/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Soluciones Oftálmicas , Receptor de Angiotensina Tipo 2/metabolismo , Receptor de Colecistoquinina A/metabolismo , Receptores del Factor Natriurético Atrial/metabolismo , Tonometría Ocular , Malla Trabecular/metabolismo
6.
Am J Pathol ; 187(4): 713-723, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28167045

RESUMEN

Glucocorticoid (GC)-induced ocular hypertension (OHT) is a serious adverse effect of prolonged GC therapy that can lead to iatrogenic glaucoma and permanent vision loss. An appropriate mouse model can help us understand precise molecular mechanisms and etiology of GC-induced OHT. We therefore developed a novel, simple, and reproducible mouse model of GC-induced OHT. GC-induced myocilin expression in the trabecular meshwork (TM) has been suggested to play an important role in GC-induced OHT. We further determined whether myocilin contributes to GC-OHT. C57BL/6J mice received weekly periocular conjunctival fornix injections of a dexamethasone-21-acetate (DEX-Ac) formulation. Intraocular pressure (IOP) elevation was relatively rapid and significant, and correlated with reduced conventional outflow facility. Nighttime IOPs were higher in ocular hypertensive eyes compared to daytime IOPs. DEX-Ac treatment led to increased expression of fibronectin, collagen I, and α-smooth muscle actin in the TM in mouse eyes. No changes in body weight indicated no systemic toxicity associated with DEX-Ac treatment. Wild-type mice showed increased myocilin expression in the TM on DEX-Ac treatment. Both wild-type and Myoc-/- mice had equivalent and significantly elevated IOP with DEX-Ac treatment every week. In conclusion, our mouse model mimics many aspects of GC-induced OHT in humans, and we further demonstrate that myocilin does not play a major role in DEX-induced OHT in mice.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Dexametasona/análogos & derivados , Proteínas del Ojo/metabolismo , Glicoproteínas/metabolismo , Hipertensión Ocular/inducido químicamente , Anestesia , Animales , Peso Corporal/efectos de los fármacos , Colágeno Tipo I/metabolismo , Dexametasona/administración & dosificación , Dexametasona/efectos adversos , Vías de Administración de Medicamentos , Esquema de Medicación , Femenino , Fibronectinas/metabolismo , Inyecciones , Inyecciones Intraoculares , Presión Intraocular , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Hipertensión Ocular/fisiopatología , Malla Trabecular/efectos de los fármacos , Malla Trabecular/patología
7.
Exp Eye Res ; 171: 106-110, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29535003

RESUMEN

Glaucoma is a vision threatening optic neuropathy that affects millions of people worldwide. In primary open angle, increased intraocular pressure (IOP) is the main risk factor for the development of this disease. Studies investigating the causes and mechanisms of increased IOP show fibrotic changes in the trabecular meshwork (TM) that are different from those of age-matched controls. Tissue transglutaminase (TGM2), an extracellular matrix (ECM) crosslinking enzyme, covalently crosslinks ECM proteins and causes excessive ECM protein deposition in the TM that could cause increased IOP. Previous literature reports increased expression of TGM2 in glaucomatous eyes compared to controls. We recently have shown that overexpression of TGM2 causes increased ECM crosslinking in the TM, increases IOP, and decreases aqueous humor (AH) outflow facility in mouse eyes. Therefore, we wanted to study the effect of TGM2 knockout (KO) on IOP in TGM2 floxed mice. Ad5.Cre transduction caused partial KO of TGM2, which decreased TGM2 expression in the TM region of mouse eyes. TGM2 KO significantly decreased IOP by itself and also in TGFß2 induced ocular hypertensive mice. TGM2 KO also restores the outflow facility in TGFß2 transduced eyes. Overall, TGM2 KO rescued the TGFß2-induced ocular hypertensive phenotype. Thus, TGM2 may offer potential as a new therapeutic target for glaucoma.


Asunto(s)
Proteínas de Unión al GTP/genética , Presión Intraocular , Hipertensión Ocular/prevención & control , Malla Trabecular/enzimología , Transglutaminasas/genética , Adenoviridae/genética , Animales , Regulación Enzimológica de la Expresión Génica/fisiología , Técnicas de Inactivación de Genes , Presión Intraocular/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Hipertensión Ocular/inducido químicamente , Hipertensión Ocular/enzimología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Reacción en Cadena en Tiempo Real de la Polimerasa , Tonometría Ocular , Transfección , Factor de Crecimiento Transformador beta2/toxicidad
8.
Exp Eye Res ; 164: 95-108, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28822760

RESUMEN

Mice are now routinely utilized in studies of aqueous humor outflow dynamics. In particular, conventional aqueous outflow facility (C) is routinely measured via perfusion of the aqueous chamber by a number of laboratories. However, in mouse eyes perfused ex-vivo, values for C are variable depending upon whether the perfusate is introduced into the posterior chamber (PC) versus the anterior chamber (AC). Perfusion via the AC leads to posterior bowing of the iris, and traction on the iris root/scleral spur, which may increase C. Perfusion via the PC does not yield this effect. But the equivalent situation in living mice has not been investigated. We sought to determine whether AC versus PC perfusion of the living mouse eye may lead to different values for C. All experiments were conducted in C57BL/6J mice (all ♀) between the ages of 20 and 30 weeks. Mice were divided into groups of 3-4 animals each. In all groups, both eyes were perfused. C was measured in groups 1 and 2 by constant flow infusion (from a 50 µL microsyringe) via needle placement in the AC, and in the PC, respectively. To investigate the effect of ciliary muscle (CM) tone on C, groups 3 and 4 were perfused live via the AC or PC with tropicamide (muscarinic receptor antagonist) added to the perfusate at a concentration of 100 µM. To investigate immediate effect of euthanasia, groups 5 and 6 were perfused 15-30 min after death via the AC or PC. To investigate the effect of CM tone on C immediately following euthanasia, groups 7 and 8 were perfused 15-30 min after death via the AC or PC with tropicamide added to the perfusate at a concentration of 100 µM. C in Groups 1 (AC perfusion) and 2 (PC perfusion) was computed to be 19.5 ± 0.8 versus 21.0 ± 2.1 nL/min/mmHg, respectively (mean ± SEM, p > 0.4, not significantly different). In live animals in which tropicamide was present in the perfusate, C in Group 3 (AC perfusion) was significantly greater than C in Group 4 (PC perfusion) (22.0 ± 4.0 versus 14.0 ± 2.0 nL/min/mmHg, respectively, p = 0.0021). In animals immediately following death, C in groups 5 (AC perfusion) and 6 (PC perfusion) was computed to be 21.2 ± 2.0 versus 22.8 ± 1.4 nL/min/mmHg, respectively (mean ± SEM, p = 0.1196, not significantly different). In dead animals in which tropicamide was present in the perfusate, C in group 7 (AC perfusion) was greater than C in group 8 (PC perfusion) (20.6 ± 1.4 versus 14.2 ± 2.6 nL/min/mmHg, respectively, p < 0.0001). C in eyes in situ in living mice or euthanized animals within 15-30 min post mortem is not significantly different when measured via AC perfusion or PC perfusion. In eyes of live or freshly euthanized mice, C is greater when measured via AC versus PC perfusion when tropicamide (a mydriatic and cycloplegic agent) is present in the perfusate.


Asunto(s)
Cámara Anterior/fisiología , Humor Acuoso/fisiología , Presión Intraocular/fisiología , Segmento Posterior del Ojo/fisiología , Animales , Cámara Anterior/efectos de los fármacos , Cámara Anterior/metabolismo , Humor Acuoso/metabolismo , Modelos Animales de Enfermedad , Femenino , Presión Intraocular/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Antagonistas Muscarínicos/farmacología , Segmento Posterior del Ojo/efectos de los fármacos , Segmento Posterior del Ojo/metabolismo , Malla Trabecular/metabolismo , Tropicamida/farmacología
9.
Exp Eye Res ; 141: 74-90, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25933714

RESUMEN

Glaucoma is a leading cause of blindness, which is treatable but currently incurable. Numerous animal models therefore have both been and continue to be utilized in the study of numerous aspects of this condition. One important facet associated with the use of such models is the ability to accurately and reproducibly measure (by cannulation) or estimate (by tonometry) intraocular pressure (IOP). At this juncture there are several different approaches to IOP measurement in different experimental animal species, and the list continues to grow. We feel therefore that a review of this subject matter is timely and should prove useful to others who wish to perform similar measurements. The general principles underlying various types of tonometric and non-tonometric techniques for non-continuous determination of IOP are considered. There follows discussion of specific details as to how these techniques are applied to experimental animal species involved in the research of this disease. Specific comments regarding anesthesia, circadian rhythm, and animal handling are also included, especially in the case of rodents. Brief consideration is also given to possible future developments.


Asunto(s)
Glaucoma/diagnóstico , Presión Intraocular/fisiología , Tonometría Ocular/métodos , Animales , Animales de Laboratorio , Modelos Animales de Enfermedad , Glaucoma/fisiopatología
10.
Exp Eye Res ; 141: 33-41, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26025608

RESUMEN

Rodents are increasingly being used as glaucoma models to study ocular hypertension, optic neuropathy, and retinopathy. A number of different techniques are used to elevate intraocular pressure in rodent eyes by artificially obstructing the aqueous outflow pathway. Another successful technique to induce ocular hypertension is to transduce the trabecular meshwork of rodent eyes with viral vectors expressing glaucoma associated transgenes to provide more relevant models of glaucomatous damage to the trabecular meshwork. This technique has been used to validate newly discovered glaucoma pathogenesis pathways as well as to develop rodent models of primary open angle glaucoma. Ocular hypertension has successfully been induced by adenovirus 5 mediated delivery of mutant MYOC, bioactivated TGFß2, SFRP1, DKK1, GREM1, and CD44. Advantages of this approach are: selective tropism for the trabecular meshwork, the ability to use numerous mouse strains, and the relatively rapid onset of IOP elevation. Disadvantages include mild-to-moderate ocular inflammation induced by the Ad5 vector and sometimes transient transgene expression. Current efforts are focused at discovering less immunogenic viral vectors that have tropism for the trabecular meshwork and drive sufficient transgene expression to induce ocular hypertension. This viral vector approach allows rapid proof of concept studies to study glaucomatous damage to the trabecular meshwork without the expensive and time-consuming generation of transgenic mouse lines.


Asunto(s)
Glaucoma , Presión Intraocular/fisiología , Malla Trabecular/metabolismo , Virus/genética , Animales , Modelos Animales de Enfermedad , Vectores Genéticos , Glaucoma/genética , Glaucoma/metabolismo , Glaucoma/fisiopatología , Ratones Transgénicos , Malla Trabecular/virología , Transgenes
11.
Sci Rep ; 14(1): 6958, 2024 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521856

RESUMEN

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.


Asunto(s)
Proteínas del Citoesqueleto , Glaucoma de Ángulo Abierto , Glicoproteínas , Animales , Ratones , Sistemas CRISPR-Cas , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Glaucoma de Ángulo Abierto/genética , Glaucoma de Ángulo Abierto/terapia , Glaucoma de Ángulo Abierto/metabolismo , Presión Intraocular/genética , Lentivirus/genética , Malla Trabecular/metabolismo
12.
Methods Mol Biol ; 2708: 77-97, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37558962

RESUMEN

Viral transduction of the mouse trabecular meshwork using a variety of transgenes associated with glaucoma generates an inducible and reproducible method for generating ocular hypertension due to increased aqueous humor outflow resistance of the conventional outflow pathway. Both adenovirus serotype 5 (Ad5) and lentiviruses have selective tropism for the mouse trabecular meshwork with intraocular injections. Accurate intraocular pressures are easily measured using a rebound tonometer, and aqueous humor outflow facilities can be measured in anesthetized live mice.


Asunto(s)
Glaucoma , Hipertensión Ocular , Ratones , Animales , Hipertensión Ocular/genética , Hipertensión Ocular/metabolismo , Presión Intraocular , Malla Trabecular/metabolismo , Humor Acuoso/metabolismo
13.
Res Sq ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38196579

RESUMEN

Mutations in myocilin (MYOC) are the leading known genetic cause of primary open-angle glaucoma, responsible for about 4% of all cases. Mutations in MYOC cause a gain-of-function phenotype in which mutant myocilin accumulates in the endoplasmic reticulum (ER) leading to ER stress and trabecular meshwork (TM) cell death. Therefore, knocking out myocilin at the genome level is an ideal strategy to permanently cure the disease. We have previously utilized CRISPR/Cas9 genome editing successfully to target MYOC using adenovirus 5 (Ad5). However, Ad5 is not a suitable vector for clinical use. Here, we sought to determine the efficacy of adeno-associated viruses (AAVs) and lentiviruses (LVs) to target the TM. First, we examined the TM tropism of single-stranded (ss) and self-complimentary (sc) AAV serotypes as well as LV expressing GFP via intravitreal (IVT) and intracameral (IC) injections. We observed that LV_GFP expression was more specific to the TM injected via the IVT route. IC injections of Trp-mutant scAAV2 showed a prominent expression of GFP in the TM. However, robust GFP expression was also observed in the ciliary body and retina. We next constructed lentiviral particles expressing Cas9 and guide RNA (gRNA) targeting MYOC (crMYOC) and transduction of TM cells stably expressing mutant myocilin with LV_crMYOC significantly reduced myocilin accumulation and its associated chronic ER stress. A single IVT injection of LV_crMYOC in Tg-MYOCY437H mice decreased myocilin accumulation in TM and reduced elevated IOP significantly. Together, our data indicates, LV_crMYOC targets MYOC gene editing in TM and rescues a mouse model of myocilin-associated glaucoma.

14.
Exp Eye Res ; 100: 65-72, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22575566

RESUMEN

Elevated intraocular pressure (IOP) is a causative risk factor for the development and progression of glaucoma. Glaucomatous mutations in myocilin (MYOC) damage the trabecular meshwork and elevate IOP in humans and in mice. Animal models of glaucoma are important to discover and better understand molecular pathogenic pathways and to test new glaucoma therapeutics. Although a number of different animal models of glaucoma have been developed and characterized, there are no true models of human primary open angle glaucoma (POAG). The overall goal of this work is to develop the first inducible mouse model of POAG using a human POAG relevant transgene (i.e. mutant MYOC) expression in mouse eyes to elevate IOP and cause pressure-induced damage to the optic nerve. Four mouse strains (A/J, BALB/cJ, C57BL/6J, and C3H/HeJ) were used in this study. Ad5.MYOC.Y437H (5 × 10(7) pfu) was injected intravitreally into one eye, with the uninjected contralateral eye serving as the control eye. Conscious IOP measurements were taken using a TonoLab rebound tonometer. Optic nerve damage was determined by scoring PPD stained optic nerve cross sections. Retinal ganglion cell and superior colliculus damage was assessed by Nissl stain cell counts. Intravitreal administration of viral vector Ad5.MYOC.Y437H caused a prolonged, reproducible, and statistically significant IOP elevation in BALB/cJ, A/J, and C57BL/6J mice. IOPs increased to approximately 25 mm Hg for 8 weeks (p < 0.0001). In contrast, the C3H/HeJ mouse strain was resistant to Ad5.MYOC.Y437H induced IOP elevation for the 8-week time period. IOPs were stable (12-15 mm Hg) in the uninjected control eyes. We also determined whether there were any strain differences in pressure-induced optic nerve damage. Even though IOP was similarly elevated in three of the strains tested (BALB/cJ, C57BL/6J, and A/J) only the A/J strain had considerable and significant optic nerve damage at the end of 8 weeks with optic nerve damage score of 2.64 ± 0.19 (n = 18, p < 0.001) in the injected eye. There was no statistical difference in retinal ganglion cell death or superior colliculus damage at the 8-week time point in any of the strains tested. These results demonstrate strain dependent responses to Ad5.MYOC.Y437H-induced ocular hypertension and pressure-induced optic nerve damage.


Asunto(s)
Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Glaucoma de Ángulo Abierto/genética , Glicoproteínas/genética , Enfermedades del Nervio Óptico/genética , Adenoviridae/genética , Animales , Femenino , Vectores Genéticos , Glaucoma de Ángulo Abierto/metabolismo , Glaucoma de Ángulo Abierto/patología , Técnicas para Inmunoenzimas , Presión Intraocular , Inyecciones Intravítreas , Ratones , Ratones Endogámicos A , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Hipertensión Ocular/genética , Hipertensión Ocular/metabolismo , Hipertensión Ocular/patología , Enfermedades del Nervio Óptico/metabolismo , Enfermedades del Nervio Óptico/patología , Especificidad de la Especie , Tonometría Ocular , Transgenes
15.
Biomedicines ; 10(3)2022 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-35327318

RESUMEN

Mutations in PITX2 cause Axenfeld-Rieger syndrome, with congenital glaucoma as an ocular feature. The egl1 mouse strain carries a chemically induced Pitx2 mutation and develops early-onset glaucoma. In this study, we characterized the glaucomatous features in egl1 mice. The eyes of egl1 and C57BL/6J control mice were assessed by slit lamp examination, total aqueous humor outflow facility, intraocular pressure (IOP) measurement, pattern electroretinography (PERG) recording, and histologic and immunohistochemistry assessment beginning at 3 weeks and up to 12 months of age. The egl1 mice developed elevated IOP as early as 4 weeks old. The IOP elevation was variable and asymmetric within and between the animals. The aqueous humor outflow facility was significantly reduced in 12-month-old animals. PERG detected a decreased response at 2 weeks after the development of IOP elevation. Retinal ganglion cell (RGC) loss was detected after 8 weeks of IOP elevation. Slit lamp and histologic evaluation revealed corneal opacity, iridocorneal adhesions (anterior synechiae), and ciliary body atrophy in egl1 mice. Immunohistochemistry assessment demonstrated glial cell activation and RGC axonal injury in response to IOP elevation. These results show that the eyes of egl1 mice exhibit anterior segment dysgenesis and early-onset glaucoma. The egl1 mouse strain may represent a useful model for the study of congenital glaucoma.

16.
Invest Ophthalmol Vis Sci ; 63(2): 15, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129587

RESUMEN

Purpose: To evaluate the effect of ATP-sensitive potassium channel openers cromakalim prodrug 1 (CKLP1) and diazoxide on IOP in three independent mouse models of ocular hypertension. Methods: Baseline IOP was measured in TGFß2 overexpression, steroid-induced, and iris dispersion (DBA/2J) ocular hypertension mouse models, followed by once daily eyedrop administration with CKLP1 (5 mM) or diazoxide (5 mM). The IOP was measured in conscious animals with a handheld rebound tonometer. Aqueous humor dynamics were assessed by a constant perfusion method. Effect of treatment on ocular tissues was evaluated by transmission electron microscopy. Results: CKLP1 decreased the IOP by 20% in TGFß2 overexpressing mice (n = 6; P < 0.0001), 24% in steroid-induced ocular hypertensive mice (n = 8; P < 0.0001), and 43% in DBA/2J mice (n = 15; P < 0.0001). Diazoxide decreased the IOP by 32% in mice with steroid-induced ocular hypertension (n = 13; P < 0.0001) and by 41% in DBA/2J mice (n = 4; P = 0.005). An analysis of the aqueous humor dynamics revealed that CKLP1 decreased the episcleral venous pressure by 29% in TGFß2 overexpressing mice (n = 13; P < 0.0001) and by 72% in DBA/2J mice (n = 4 control, 3 treated; P = 0.0002). Diazoxide lowered episcleral venous pressure by 35% in steroid-induced ocular hypertensive mice (n = 3; P = 0.03). Tissue histology and cell morphology appeared normal when compared with controls. Accumulation of extracellular matrix was reduced in CKLP1- and diazoxide-treated eyes in the steroid-induced ocular hypertension model. Conclusions: ATP-sensitive potassium channel openers CKLP1 and diazoxide effectively decreased the IOP in ocular hypertensive animal models by decreasing the episcleral venous pressure, supporting a potential therapeutic application of these agents in ocular hypertension and glaucoma.


Asunto(s)
Cromakalim/administración & dosificación , Diazóxido/administración & dosificación , Presión Intraocular/efectos de los fármacos , Canales KATP/efectos de los fármacos , Hipertensión Ocular/tratamiento farmacológico , Animales , Antihipertensivos/administración & dosificación , Modelos Animales de Enfermedad , Ojo/ultraestructura , Canales KATP/metabolismo , Ratones , Ratones Endogámicos DBA , Microscopía Electrónica de Transmisión , Hipertensión Ocular/metabolismo , Hipertensión Ocular/fisiopatología , Soluciones Oftálmicas
17.
Invest Ophthalmol Vis Sci ; 63(2): 12, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35129590

RESUMEN

Due to their similarities in anatomy, physiology, and pharmacology to humans, mice are a valuable model system to study the generation and mechanisms modulating conventional outflow resistance and thus intraocular pressure. In addition, mouse models are critical for understanding the complex nature of conventional outflow homeostasis and dysfunction that results in ocular hypertension. In this review, we describe a set of minimum acceptable standards for developing, characterizing, and utilizing mouse models of open-angle ocular hypertension. We expect that this set of standard practices will increase scientific rigor when using mouse models and will better enable researchers to replicate and build upon previous findings.


Asunto(s)
Humor Acuoso/fisiología , Consenso , Glaucoma/metabolismo , Presión Intraocular/fisiología , Hipertensión Ocular/metabolismo , Malla Trabecular/metabolismo , Animales , Modelos Animales de Enfermedad , Glaucoma/fisiopatología , Ratones , Hipertensión Ocular/fisiopatología , Tonometría Ocular
18.
J Clin Invest ; 118(3): 1056-64, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18274669

RESUMEN

Elevated intraocular pressure (IOP) is the principal risk factor for glaucoma and results from excessive impedance of the fluid outflow from the eye. This abnormality likely originates from outflow pathway tissues such as the trabecular meshwork (TM), but the associated molecular etiology is poorly understood. We discovered what we believe to be a novel role for secreted frizzled-related protein-1 (sFRP-1), an antagonist of Wnt signaling, in regulating IOP. sFRP1 was overexpressed in human glaucomatous TM cells. Genes involved in the Wnt signaling pathway were expressed in cultured TM cells and human TM tissues. Addition of recombinant sFRP-1 to ex vivo perfusion-cultured human eyes decreased outflow facility, concomitant with reduced levels of beta-catenin, the Wnt signaling mediator, in the TM. Intravitreal injection of an adenoviral vector encoding sFRP1 in mice produced a titer-dependent increase in IOP. Five days after vector injection, IOP increased 2 fold, which was significantly reduced by topical ocular administration of an inhibitor of a downstream suppressor of Wnt signaling. Thus, these data indicate that increased expression of sFRP1 in the TM appears to be responsible for elevated IOP in glaucoma and restoring Wnt signaling in the TM may be a novel disease intervention strategy for treating glaucoma.


Asunto(s)
Glaucoma/fisiopatología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Presión Intraocular , Proteínas de la Membrana/fisiología , Proteínas Wnt/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Células Cultivadas , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , ARN Mensajero/análisis , Transducción de Señal , Malla Trabecular/metabolismo , beta Catenina/fisiología
19.
Invest Ophthalmol Vis Sci ; 62(6): 3, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33938911

RESUMEN

Purpose: In POAG, elevated IOP remains the major risk factor in irreversible vision loss. Increased TGFß2 expression in POAG aqueous humor and in the trabecular meshwork (TM) amplifies extracellular matrix (ECM) deposition and reduces ECM turnover in the TM, leading to a decreased aqueous humor (AH) outflow facility and increased IOP. Inhibitor of DNA binding proteins (ID1 and ID3) inhibit TGFß2-induced fibronectin and PAI-1 production in TM cells. We examined the effects of ID1 and ID3 gene expression on TGFß2-induced ocular hypertension and decreased AH outflow facility in living mouse eyes. Methods: IOP and AH outflow facility changes were determined using a mouse model of Ad5-hTGFß2C226S/C288S-induced ocular hypertension. The physiological function of ID1 and ID3 genes were evaluated using Ad5 viral vectors to enhance or knockdown ID1/ID3 gene expression in the TM of BALB/cJ mice. IOP was measured in conscious mice using a Tonolab impact tonometer. AH outflow facilities were determined by constant flow infusion in live mice. Results: Over-expressing ID1 and ID3 significantly blocked TGFß2-induced ocular hypertension (P < 0.0001). Although AH outflow facility was significantly decreased in TGFß2-transduced eyes (P < 0.04), normal outflow facility was preserved in eyes injected concurrently with ID1 or ID3 along with TGFß2. Knockdown of ID1 or ID3 expression exacerbated TGFß2-induced ocular hypertension. Conclusions: Increased expression of ID1 and ID3 suppressed both TGFß2-elevated IOP and decreased AH outflow facility. ID1 and/or ID3 proteins thus may show promise as future candidates as IOP-lowering targets in POAG.


Asunto(s)
Humor Acuoso/fisiología , Proteína 1 Inhibidora de la Diferenciación/fisiología , Proteínas Inhibidoras de la Diferenciación/fisiología , Presión Intraocular/efectos de los fármacos , Hipertensión Ocular/inducido químicamente , Malla Trabecular/efectos de los fármacos , Factor de Crecimiento Transformador beta2/farmacología , Adenoviridae/genética , Animales , Femenino , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Inyecciones Intravítreas , Ratones , Ratones Endogámicos BALB C , Hipertensión Ocular/metabolismo , Tonometría Ocular , Malla Trabecular/metabolismo
20.
Mol Neurodegener ; 15(1): 48, 2020 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854767

RESUMEN

BACKGROUND: Glaucoma is a leading neurodegenerative disease affecting over 70 million individuals worldwide. Early pathological events of axonal degeneration and retinopathy in response to elevated intraocular pressure (IOP) are limited and not well-defined due to the lack of appropriate animal models that faithfully replicate all the phenotypes of primary open angle glaucoma (POAG), the most common form of glaucoma. Glucocorticoid (GC)-induced ocular hypertension (OHT) and its associated iatrogenic open-angle glaucoma share many features with POAG. Here, we characterized a novel mouse model of GC-induced OHT for glaucomatous neurodegeneration and further explored early pathological events of axonal degeneration in response to elevated IOP. METHODS: C57BL/6 J mice were periocularly injected with either vehicle or the potent GC, dexamethasone 21-acetate (Dex) once a week for 10 weeks. Glaucoma phenotypes including IOP, outflow facility, structural and functional loss of retinal ganglion cells (RGCs), optic nerve (ON) degeneration, gliosis, and anterograde axonal transport deficits were examined at various stages of OHT. RESULTS: Prolonged treatment with Dex leads to glaucoma in mice similar to POAG patients including IOP elevation due to reduced outflow facility and dysfunction of trabecular meshwork, progressive ON degeneration and structural and functional loss of RGCs. Lowering of IOP rescued Dex-induced ON degeneration and RGC loss, suggesting that glaucomatous neurodegeneration is IOP dependent. Also, Dex-induced neurodegeneration was associated with activation of astrocytes, axonal transport deficits, ON demyelination, mitochondrial accumulation and immune cell infiltration in the optic nerve head (ONH) region. Our studies further show that ON degeneration precedes structural and functional loss of RGCs in Dex-treated mice. Axonal damage and transport deficits initiate at the ONH and progress toward the distal end of ON and target regions in the brain (i.e. superior colliculus). Most of anterograde transport was preserved during initial stages of axonal degeneration (30% loss) and complete transport deficits were only observed at the ONH during later stages of severe axonal degeneration (50% loss). CONCLUSIONS: These findings indicate that ON degeneration and transport deficits at the ONH precede RGC structural and functional loss and provide a new potential therapeutic window for rescuing neuronal loss and restoring health of damaged axons in glaucoma.


Asunto(s)
Transporte Axonal/fisiología , Glaucoma/patología , Degeneración Nerviosa/patología , Disco Óptico/patología , Células Ganglionares de la Retina/patología , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA