Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Metabolomics ; 20(2): 40, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460019

RESUMEN

INTRODUCTION: Studies of gastrointestinal physiology and the gut microbiome often consider the influence of intestinal region on experimental endpoints. However, this same consideration is not often applied to the gut metabolome. Understanding the contribution of gut regionality may be critically important to the rapidly changing metabolic environments, such as during pregnancy. OBJECTIVES: We sought to characterize the difference in the gut metabolome in pregnant mice stratified by region-comparing the small intestine, cecum, and feces. Pre-pregnancy feces were collected to understand the influence of pregnancy on the fecal metabolome. METHODS: Feces were collected from CD-1 female mice before breeding. On gestation day (GD) 18, gut contents were collected from the small intestine, cecum, and descending colon. Metabolites were analyzed with LC-MS/MS using the Biocrates MetaboINDICATOR™ MxP® Quant 500 kit. RESULTS: Of the 104 small molecule metabolites meeting analysis criteria, we found that 84 (81%) were differentially abundant based on gut region. The most significant regional comparison observed was between the cecum and small intestines, with 52 (50%) differentially abundant metabolites. Pregnancy itself altered 41 (39.4%) fecal small molecule metabolites. CONCLUSIONS: The regional variation observed in the gut metabolome are likely due to the microbial and physiological differences between the different parts of the intestines. Additionally, pregnancy impacts the fecal metabolome, which may be due to evolving needs of both the dam and fetus.


Asunto(s)
Microbioma Gastrointestinal , Metabolómica , Embarazo , Femenino , Ratones , Animales , Cromatografía Liquida , Espectrometría de Masas en Tándem , Metaboloma
2.
FASEB J ; 36(12): e22664, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36412511

RESUMEN

Altered fetal growth, which can occur due to environmental stressors during pregnancy, may program a susceptibility to metabolic disease. Gestational exposure to the air pollutant ozone is associated with fetal growth restriction in humans and rodents. However, the impact of this early life ozone exposure on offspring metabolic risk has not yet been investigated. In this study, fetal growth restriction was induced by maternal inhalation of 0.8 ppm ozone on gestation days 5 and 6 (4 hr/day) in Long Evans rats. To uncover any metabolic inflexibility, or an impaired ability to respond to a high-fat diet (HFD), a subset of peri-adolescent male and female offspring from filtered air or ozone exposed dams were fed HFD (45% kcal from fat) for 3 days. By 6 weeks of age, male and female offspring from ozone-exposed dams were heavier than offspring from air controls. Furthermore, offspring from ozone-exposed dams had greater daily caloric consumption and reduced metabolic rate when fed HFD. In addition to energy imbalance, HFD-fed male offspring from ozone-exposed dams had dyslipidemia and increased adiposity, which was not evident in females. HFD consumption in males resulted in the activation of the protective 5'AMP-activated protein kinase (AMPKα) and sirtuin 1 (SIRT1) pathways in the liver, regardless of maternal exposure. Unlike males, ozone-exposed female offspring failed to activate these pathways, retaining hepatic triglycerides following HFD consumption that resulted in increased inflammatory gene expression and reduced insulin signaling genes. Taken together, maternal ozone exposure in early pregnancy programs impaired metabolic flexibility in offspring, which may increase susceptibility to obesity in males and hepatic dysfunction in females.


Asunto(s)
Dieta Alta en Grasa , Ozono , Embarazo , Animales , Ratas , Humanos , Masculino , Femenino , Adolescente , Dieta Alta en Grasa/efectos adversos , Ratas Long-Evans , Ozono/toxicidad , Retardo del Crecimiento Fetal , Obesidad/metabolismo , Vitaminas
3.
J Clin Nurs ; 32(7-8): 1089-1102, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35437838

RESUMEN

AIMS AND OBJECTIVES: To explore healthcare staff's experiences of how dehydration is identified and managed in hospitalised patients after acute stroke, and facilitators and challenges to optimising hydration. BACKGROUND: Optimal hydration post-stroke reduces the risk of neurological deterioration and other complications. Patients are at risk of dehydration in acute stroke, particularly those with dysphagia. DESIGN: A descriptive qualitative study reported following the COREQ guidelines. METHODS: Semi-structured interviews, utilising patient vignettes, were conducted in 2018 (Apr-Oct) with a purposive sample of 30 multidisciplinary staff members from two UK stroke units. Interviews were digitally recorded and transcribed verbatim. Content analysis identified common themes which were mapped to the Theoretical Domains Framework and the Behaviour Change Wheel. RESULTS: The themes were mapped to twelve of the fourteen domains in the Theoretical Domains Framework. Participants believed that inadequate hydration management had potentially serious consequences, and described complex knowledge, skills and cognitive elements to effective hydration care. Participants felt that maintaining hydration was a multidisciplinary responsibility requiring good communication. Although the performance of initial dysphagia screening was reinforced by external audit, other areas of post-stroke hydration management were not; notably, there was no established method of assessing hydration. Barriers to maintaining good hydration included lack of staff, out-of-hours working patterns, low priority given to hydration, patients' comorbidities and complex post-stroke disabilities such as dysphagia, aphasia, inattention and hemiparesis. CONCLUSION: Findings highlighted the importance of assessing and maintaining hydration but identified barriers to, and variation in, clinical practice. To provide optimal care, barriers to the prevention and treatment of dehydration after stroke must be further understood and addressed. RELEVANCE TO CLINICAL PRACTICE: Multidisciplinary teamwork is important in hydration care after stroke, but clarity is required about the specific contributions of each team member. Without this, hydration care becomes 'everybody's and nobody's job'.


Asunto(s)
Trastornos de Deglución , Accidente Cerebrovascular , Humanos , Trastornos de Deglución/terapia , Deshidratación/prevención & control , Conocimientos, Actitudes y Práctica en Salud , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Emociones
4.
BMC Nurs ; 22(1): 403, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891567

RESUMEN

BACKGROUND: Dehydration and malnutrition are common in hospitalised patients following stroke leading to poor outcomes including increased mortality. Little is known about hydration and nutrition care practices in hospital to avoid dehydration or malnutrition, and how these practices vary in different countries. This study sought to capture how the hydration and nutrition needs of patients' post-stroke are assessed and managed in the United Kingdom (UK) and Australia (AUS). AIM: To examine and compare current in-hospital hydration and nutrition care practice for patients with stroke in the UK and Australia. METHODS: A cross-sectional survey was conducted between April and November 2019. Questionnaires were mailed to stroke specialist nurses in UK and Australian hospitals providing post-stroke inpatient acute care or rehabilitation. Non-respondents were contacted up to five times. RESULTS: We received 150/174 (86%) completed surveys from hospitals in the UK, and 120/162 (74%) in Australia. Of the 270 responding hospitals, 96% reported undertaking assessment of hydration status during an admission, with nurses most likely to complete assessments (85%). The most common methods of admission assessment were visual assessment of the patient (UK 62%; AUS 58%), weight (UK 52%; AUS 52%), and body mass index (UK 47%; AUS 42%). Almost all (99%) sites reported that nutrition status was assessed at some point during admission, and these were mainly completed by nurses (91%). Use of standardised nutrition screening tools were more common in the UK (91%) than Australia (60%). Similar proportions of hydration management decisions were made by physicians (UK 84%; AUS 83%), and nutrition management decisions by dietitians (UK 98%; AUS 97%). CONCLUSION: Despite broadly similar hydration and nutrition care practices after stroke in the UK and Australia, some variability was identified. Although nutrition assessment was more often informed by structured screening tools, the routine assessment of hydration was generally not. Nurses were responsible for assessment and monitoring, while dietitians and physicians undertook decision-making regarding management. Hydration care could be improved through the development of standardised assessment tools. This study highlights the need for increased implementation and use of evidence-based protocols in stroke hydration and nutrition care to improve patient outcomes.

5.
Toxicol Appl Pharmacol ; 447: 116085, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35618032

RESUMEN

Ozone-induced lung injury/inflammation dissipates despite continued exposure for 3 or more days; however, the mechanisms of adaptation/habituation remain unclear. Since ozone effects are mediated through adrenal-derived stress hormones, which also regulate longevity of centrally-mediated stress response, we hypothesized that ozone-adaptation is linked to diminution of neuroendocrine stress-axes activation and glucocorticoid levels. Male Wistar-Kyoto-rats (12-week-old) were injected with vehicle or a therapeutically-relevant dexamethasone dose (0.01-mg/kg/day; intraperitoneal) for 1-month to determine if suppression of glucocorticoid signaling was linked to adaptation. Vehicle- and dexamethasone-treated rats were exposed to air or 0.8-ppm ozone, 4 h/day × 2 or 4 days to assess the impacts of acute exposure and adaptation, respectively. Dexamethasone reduced thymus and spleen weights, circulating lymphocytes, corticosterone and increased insulin. Ozone increased lavage-fluid protein and neutrophils and decreased circulating lymphocytes at day-2 but not day-4. Ozone-induced hyperglycemia, glucose intolerance and inhibition of beta-cell insulin release occurred at day-1 but not day-3. Ozone depleted circulating prolactin, thyroid-stimulating hormone, and luteinizing-hormone at day-2 but not day-4, suggesting central mediation of adaptation. Adrenal epinephrine biosynthesis gene, Pnmt, was up-regulated after ozone exposure at both timepoints. However, genes involved in glucocorticoid biosynthesis were up-regulated after day-2 but not day-4, suggesting that acute 1- or 2-day ozone-mediated glucocorticoid increase elicits feedback inhibition to dampen hypothalamic stimulation of ACTH release in response to repeated subsequent ozone exposures. Although dexamethasone pretreatment affected circulating insulin, lymphocytes and adrenal genes, it had modest effect on ozone adaptation. In conclusion, ozone adaptation likely involves lack of hypothalamic response due to reduced availability of circulating glucocorticoids.


Asunto(s)
Ozono , Neumonía , Animales , Corticosterona , Dexametasona/toxicidad , Glucocorticoides/toxicidad , Inflamación , Insulina/metabolismo , Masculino , Sistemas Neurosecretores , Ozono/toxicidad , Neumonía/inducido químicamente , Ratas , Ratas Endogámicas WKY
6.
Toxicol Appl Pharmacol ; 457: 116295, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36341779

RESUMEN

Psychosocially-stressed individuals might have exacerbated responses to air pollution exposure. Acute ozone exposure activates the neuroendocrine stress response leading to systemic metabolic and lung inflammatory changes. We hypothesized chronic mild stress (CS) and/or social isolation (SI) would cause neuroendocrine, inflammatory, and metabolic phenotypes that would be exacerbated by an acute ozone exposure. Male 5-week-old Wistar-Kyoto rats were randomly assigned into 3 groups: no stress (NS) (pair-housed, regular-handling); SI (single-housed, minimal-handling); CS (single-housed, subjected to mild unpredicted-randomized stressors [restraint-1 h, tilted cage-1 h, shaking-1 h, intermittent noise-6 h, and predator odor-1 h], 1-stressor/day*5-days/week*8-weeks. All animals then 13-week-old were subsequently exposed to filtered-air or ozone (0.8-ppm) for 4 h and immediately necropsied. CS, but not SI animals had increased adrenal weights. However, relative to NS, both CS and SI had lower circulating luteinizing hormone, prolactin, and follicle-stimulating hormone regardless of exposure (SI > CS), and only CS demonstrated lower thyroid-stimulating hormone levels. SI caused more severe systemic inflammation than CS, as evidenced by higher circulating cytokines and cholesterol. Ozone exposure increased urine corticosterone and catecholamine metabolites with no significant stressor effect. Ozone-induced lung injury, and increases in lavage-fluid neutrophils and IL-6, were exacerbated by SI. Ozone severely lowered circulating thyroid-stimulating hormone, prolactin, and luteinizing hormone in all groups and exacerbated systemic inflammation in SI. Ozone-induced increases in serum glucose, leptin, and triglycerides were consistent across stressors; however, increases in cholesterol were exacerbated by SI. Collectively, psychosocial stressors, especially SI, affected the neuroendocrine system and induced adverse metabolic and inflammatory effects that were exacerbated by ozone exposure.

7.
Ecotoxicol Environ Saf ; 248: 114314, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36436258

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) comprise a diverse class of chemicals used in industrial processes, consumer products, and fire-fighting foams which have become environmental pollutants of concern due to their persistence, ubiquity, and associations with adverse human health outcomes, including in pregnant persons and their offspring. Multiple PFAS are associated with adverse liver outcomes in adult humans and toxicological models, but effects on the developing liver are not fully described. Here we performed transcriptomic analyses in the mouse to investigate the molecular mechanisms of hepatic toxicity in the dam and its fetus after exposure to two different PFAS, perfluorooctanoic acid (PFOA) and its replacement, hexafluoropropylene oxide-dimer acid (HFPO-DA, known as GenX). Pregnant CD-1 mice were exposed via oral gavage from embryonic day (E) 1.5-17.5 to PFOA (0, 1, or 5 mg/kg-d) or GenX (0, 2, or 10 mg/kg-d). Maternal and fetal liver RNA was isolated (N = 5 per dose/group) and the transcriptome analyzed by Affymetrix Array. Differentially expressed genes (DEG) and differentially enriched pathways (DEP) were obtained. DEG patterns were similar in maternal liver for 5 mg/kg PFOA, 2 mg/kg GenX, and 10 mg/kg GenX (R2: 0.46-0.66). DEG patterns were similar across all 4 dose groups in fetal liver (R2: 0.59-0.81). There were more DEGs in fetal liver compared to maternal liver at the low doses for both PFOA (fetal = 69, maternal = 8) and GenX (fetal = 154, maternal = 93). Upregulated DEPs identified across all groups included Fatty Acid Metabolism, Peroxisome, Oxidative Phosphorylation, Adipogenesis, and Bile Acid Metabolism. Transcriptome-phenotype correlation analyses demonstrated > 1000 maternal liver DEGs were significantly correlated with maternal relative liver weight (R2 >0.92). These findings show shared biological pathways of liver toxicity for PFOA and GenX in maternal and fetal livers in CD-1 mice. The limited overlap in specific DEGs between the dam and fetus suggests the developing liver responds differently than the adult liver to these chemical stressors. This work helps define mechanisms of hepatic toxicity of two structurally unique PFAS and may help predict latent consequences of developmental exposure.


Asunto(s)
Fluorocarburos , Adulto , Humanos , Femenino , Embarazo , Ratones , Animales , Fluorocarburos/toxicidad , Óxidos , Caprilatos/toxicidad , Feto , Polímeros
8.
J Toxicol Environ Health A ; 84(6): 235-248, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33317425

RESUMEN

Acute-phase response (APR) is an innate stress reaction to tissue trauma or injury, infection, and environmental insults like ozone (O3). Regardless of the location of stress, the liver has been considered the primary contributor to circulating acute-phase proteins (APPs); however, the mechanisms underlying APR induction are unknown. Male Wistar-Kyoto rats were exposed to air or O3 (1 ppm, 6-hr/day, 1 or 2 days) and examined immediately after each exposure and after 18-hr recovery for APR proteins and gene expression. To assess the contribution of adrenal-derived stress hormones, lung and liver global gene expression data from sham and adrenalectomized rats exposed to air or O3 were compared for APR transcriptional changes. Data demonstrated serum protein alterations for selected circulating positive and negative APPs following 2 days of O3 exposure and during recovery. At baseline, APP gene expression was several folds higher in the liver relative to the lung. O3-induced increases were significant for lung but not liver for some genes including orosomucoid-1. Further, comparative assessment of mRNA seq data for known APPs in sham rats exhibited marked elevation in the lung but not liver, and a near-complete abolishment of APP mRNA levels in lung tissue of adrenalectomized rats. Thus, the lung appears to play a critical role in O3-induced APP synthesis and requires the presence of circulating adrenal-derived stress hormones. The relative contribution of lung versus liver and the role of neuroendocrine stress hormones need to be considered in future APR studies involving inhaled pollutants.


Asunto(s)
Proteínas de Fase Aguda/genética , Contaminantes Atmosféricos/efectos adversos , Expresión Génica , Hormonas/metabolismo , Hígado/patología , Pulmón/patología , Ozono/efectos adversos , Proteínas de Fase Aguda/metabolismo , Reacción de Fase Aguda/inducido químicamente , Glándulas Suprarrenales/metabolismo , Animales , Masculino , Ratas , Ratas Endogámicas WKY
9.
Emerg Med J ; 38(5): 387-393, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33608393

RESUMEN

BACKGROUND: Around 25% of patients who had a stroke do not present with typical 'face, arm, speech' symptoms at onset, and are challenging for emergency medical services (EMS) to identify. The aim of this systematic review was to identify the characteristics of acute stroke presentations associated with inaccurate EMS identification (false negatives). METHOD: We performed a systematic search of MEDLINE, EMBASE, CINAHL and PubMed from 1995 to August 2020 using key terms: stroke, EMS, paramedics, identification and assessment. Studies included: patients who had a stroke or patient records; ≥18 years; any stroke type; prehospital assessment undertaken by health professionals including paramedics or technicians; data reported on prehospital diagnostic accuracy and/or presenting symptoms. Data were extracted and study quality assessed by two researchers using the Quality Assessment of Diagnostic Accuracy Studies V.2 tool. RESULTS: Of 845 studies initially identified, 21 observational studies met the inclusion criteria. Of the 6934 stroke and Transient Ischaemic Attack patients included, there were 1774 (26%) false negative patients (range from 4 (2%) to 247 (52%)). Commonly documented symptoms in false negative cases were speech problems (n=107; 13%-28%), nausea/vomiting (n=94; 8%-38%), dizziness (n=86; 23%-27%), changes in mental status (n=51; 8%-25%) and visual disturbance/impairment (n=43; 13%-28%). CONCLUSION: Speech problems and posterior circulation symptoms were the most commonly documented symptoms among stroke presentations that were not correctly identified by EMS (false negatives). However, the addition of further symptoms to stroke screening tools requires valuation of subsequent sensitivity and specificity, training needs and possible overuse of high priority resources.


Asunto(s)
Errores Diagnósticos/estadística & datos numéricos , Auxiliares de Urgencia/estadística & datos numéricos , Ataque Isquémico Transitorio/diagnóstico , Accidente Cerebrovascular/diagnóstico , Servicio de Urgencia en Hospital/estadística & datos numéricos , Humanos , Ataque Isquémico Transitorio/fisiopatología , Estudios Observacionales como Asunto , Estudios Retrospectivos , Accidente Cerebrovascular/fisiopatología
10.
Fam Pract ; 37(1): 4-14, 2020 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324915

RESUMEN

BACKGROUND: Lifelong secondary prevention medication is recommended after stroke or transient ischaemic attack. However, poor medication adherence and persistence, which lead to suboptimal health outcomes, are common, but the reasons for this are not well understood, mainly because there have been few studies reporting adherence barriers in stroke survivors. OBJECTIVE: The aim of this review was to undertake a meta-synthesis of qualitative studies of medication-taking after stroke. Outcomes of interest were: lived experiences, views and beliefs, and strategies and solutions used by community-dwelling stroke and transient ischaemic attack survivors, informal carers and health care professionals in relation to medication-taking. METHOD: The review protocol was registered on PROSPERO (CRD42018086792). A search of online bibliographic databases was performed using key search terms of stroke, persistence, adherence and medication for years 1980-2018. Citation tracking was also carried out. Studies using qualitative or mixed methods were included. Systematic data extraction and synthesis were conducted using a meta-ethnographic approach. RESULTS: Twelve studies were eligible for inclusion, with a total of 412 participants, two-thirds of whom were stroke survivors, ranging from 1 month to over 20 years post-stroke. Third-order themes identified were 'Medicines Work'-Information Work; Health Care Work; Carer Work; Emotional Work; Practical Work and an underpinning theme of Trust. However, many studies had significant methodological weaknesses. CONCLUSIONS: This synthesis suggests that the burden of 'medicines work' after stroke is substantial and multifaceted. Its successful undertaking depends on mutual trust between stroke survivors, carers and health care professionals and trust in the benefits of medicines themselves.


Asunto(s)
Cuidadores/psicología , Conocimientos, Actitudes y Práctica en Salud , Personal de Salud/psicología , Cumplimiento de la Medicación , Prevención Secundaria , Accidente Cerebrovascular/tratamiento farmacológico , Sobrevivientes/psicología , Humanos , Investigación Cualitativa
11.
Inhal Toxicol ; 32(4): 155-169, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32366144

RESUMEN

Background: The release of catecholamines is preceded by glucocorticoids during a stress response. We have shown that ozone-induced pulmonary responses are mediated through the activation of stress hormone receptors.Objective: To examine the interdependence of beta-adrenergic (ßAR) and glucocorticoid receptors (GRs), we inhibited ßAR while inducing GR or inhibited GR while inducing ßAR and examined ozone-induced stress response.Methods: Twelve-week-old male Wistar-Kyoto rats were pretreated daily with saline or propranolol (PROP; ßAR-antagonist; 10 mg/kg-i.p.; starting 7-d prior to exposure) followed-by saline or dexamethasone (DEX) sulfate (GR-agonist; 0.02 mg/kg-i.p.; starting 1-d prior to exposure) and exposed to air or 0.8 ppm ozone (4 h/d × 2-d). In a second experiment, rats were similarly pretreated with corn-oil or mifepristone (MIFE; GR-antagonist, 30 mg/kg-s.c.) followed by saline or clenbuterol (CLEN; ß2AR-agonist; 0.02 mg/kg-i.p.) and exposed.Results: DEX and PROP + DEX decreased adrenal, spleen and thymus weights in all rats. DEX and MIFE decreased and increased corticosterone, respectively. Ozone-induced pulmonary protein leakage, inflammation and IL-6 increases were inhibited by PROP or PROP + DEX and exacerbated by CLEN or CLEN + MIFE. DEX and ozone-induced while MIFE reversed lymphopenia (MIFE > CLEN + MIFE). DEX exacerbated while PROP, MIFE, or CLEN + MIFE inhibited ozone-induced hyperglycemia and glucose intolerance. Ozone inhibited glucose-mediated insulin release.Conclusions: In summary, 1) activating ßAR, even with GR inhibition, exacerbated and inhibiting ßAR, even with GR activation, attenuated ozone-induced pulmonary effects; and 2) activating GR exacerbated ozone systemic effects, but with ßAR inhibition, this exacerbation was less remarkable. These data suggest the independent roles of ßAR in pulmonary and dependent roles of ßAR and GR in systemic effects of ozone.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Pulmón/efectos de los fármacos , Ozono/toxicidad , Receptores Adrenérgicos beta/metabolismo , Receptores de Glucocorticoides/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Animales , Corticosterona/sangre , Dexametasona/farmacología , Epinefrina/sangre , Glucocorticoides/farmacología , Hiperglucemia/inducido químicamente , Insulina/metabolismo , Pulmón/metabolismo , Pulmón/patología , Linfopenia/inducido químicamente , Masculino , Mifepristona/farmacología , Propranolol/farmacología , Ratas Endogámicas WKY , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/antagonistas & inhibidores
12.
Toxicol Appl Pharmacol ; 339: 161-171, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29247675

RESUMEN

Recent studies showed that the circulating stress hormones, epinephrine and corticosterone/cortisol, are involved in mediating ozone-induced pulmonary effects through the activation of the sympathetic-adrenal-medullary (SAM) and hypothalamus-pituitary-adrenal (HPA) axes. Hence, we examined the role of adrenergic and glucocorticoid receptor inhibition in ozone-induced pulmonary injury and inflammation. Male 12-week old Wistar-Kyoto rats were pretreated daily for 7days with propranolol (PROP; a non-selective ß adrenergic receptor [AR] antagonist, 10mg/kg, i.p.), mifepristone (MIFE; a glucocorticoid receptor [GR] antagonist, 30mg/kg, s.c.), both drugs (PROP+MIFE), or respective vehicles, and then exposed to air or ozone (0.8ppm), 4h/d for 1 or 2 consecutive days while continuing drug treatment. Ozone exposure alone led to increased peak expiratory flow rates and enhanced pause (Penh); with greater increases by day 2. Receptors blockade minimally affected ventilation in either air- or ozone-exposed rats. Ozone exposure alone was also associated with marked increases in pulmonary vascular leakage, macrophage activation, neutrophilic inflammation and lymphopenia. Notably, PROP, MIFE and PROP+MIFE pretreatments significantly reduced ozone-induced pulmonary vascular leakage; whereas PROP or PROP+MIFE reduced neutrophilic inflammation. PROP also reduced ozone-induced increases in bronchoalveolar lavage fluid (BALF) IL-6 and TNF-α proteins and/or lung Il6 and Tnfα mRNA. MIFE and PROP+MIFE pretreatments reduced ozone-induced increases in BALF N-acetyl glucosaminidase activity, and lymphopenia. We conclude that stress hormones released after ozone exposure modulate pulmonary injury and inflammatory effects through AR and GR in a receptor-specific manner. Individuals with pulmonary diseases receiving AR and GR-related therapy might experience changed sensitivity to air pollution.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacología , Antagonistas de Hormonas/farmacología , Lesión Pulmonar/metabolismo , Ozono/toxicidad , Receptores Adrenérgicos/metabolismo , Receptores de Glucocorticoides/metabolismo , Antagonistas Adrenérgicos beta/uso terapéutico , Animales , Líquido del Lavado Bronquioalveolar , Antagonistas de Hormonas/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Mediadores de Inflamación/antagonistas & inhibidores , Mediadores de Inflamación/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Masculino , Mifepristona/farmacología , Mifepristona/uso terapéutico , Ratas , Ratas Endogámicas WKY , Receptores de Glucocorticoides/antagonistas & inhibidores
13.
Inhal Toxicol ; 30(4-5): 178-186, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29947284

RESUMEN

Apelin has cardiopulmonary protective properties that promote vasodilation and maintenance of the endothelial barrier. While reductions in apelin have been identified as a contributor to various lung diseases, including pulmonary edema, its role in the effect of air pollutants has not been examined. Thus, in the current study, we sought to investigate if apelin is a downstream target of inhaled ozone and if such change in expression is related to altered DNA methylation in the lung. Male, Long-Evans rats were exposed to filtered air or 1.0 ppm ozone for 4 h. Ventilation changes were assessed using whole-body plethysmography immediately following exposure, and markers of pulmonary edema and inflammation were assessed in the bronchoaveolar lavage (BAL) fluid. The enzymatic regulators of DNA methylation were measured in the lung, along with methylation and hydroxymethylation of the apelin promoter. Data showed that ozone exposure was associated with increased enhanced pause and protein leakage in the BAL fluid. Ozone exposure reduced DNA cytosine-5-methyltransferase (DNMT) activity and Dnmt3a/b gene expression. Exposure-induced upregulation of proliferating cell nuclear antigen, indicative of DNA damage, repair, and maintenance methylation. Increased methylation and reduced hydroxymethylation were measured on the apelin promoter. These epigenetic modifications accompanied ozone-induced reduction of apelin expression and development of pulmonary edema. In conclusion, epigenetic regulation, specifically increased methylation of the apelin promoter downstream of DNA damage, may lead to reductions in protective signaling of the apelinergic system, contributing to the pulmonary edema observed following the exposure to oxidant air pollution.


Asunto(s)
Apelina/genética , Daño del ADN , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Exposición por Inhalación , Pulmón/efectos de los fármacos , Ozono/toxicidad , Edema Pulmonar/inducido químicamente , Animales , Apelina/metabolismo , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Pulmón/metabolismo , Pulmón/fisiopatología , Masculino , Antígeno Nuclear de Célula en Proliferación/metabolismo , Regiones Promotoras Genéticas , Edema Pulmonar/genética , Edema Pulmonar/metabolismo , Edema Pulmonar/fisiopatología , Ventilación Pulmonar/efectos de los fármacos , Ratas Long-Evans , ADN Metiltransferasa 3B
14.
Artículo en Inglés | MEDLINE | ID: mdl-28145849

RESUMEN

People living in regions of low socioeconomic status are thought to be prone to higher exposures to environmental pollutants, poor nutrition, and numerous preventable diseases and infections. Poverty correlates with pollution and malnutrition; however, limited studies examined their interrelationship. The well-studied, deleterious health effects attributed to environmental pollutants and poor nutrition may act in combination with produce more severe adverse health outcomes than any one factor alone. Deficiencies in specific nutrients render the body more susceptible to injury which may influence the pathways that serve as the mechanistic responses to ambient air pollutants. This review (1) explores specific micronutrients that are of global concern, (2) explains how these nutrients may impact the body's response to ambient air pollution, and (3) provides guidance on designing animal models of nutritional deficiency. It is likely that those individuals who reside in regions of high ambient air pollution are similarly malnourished. Therefore, it is important that research identifies specific nutrients of concern and their impact in identified regions of high ambient air pollution.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Micronutrientes/metabolismo , Contaminantes Atmosféricos/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Animales , Humanos , Ratones , Micronutrientes/deficiencia , Modelos Animales , Ratas
15.
Toxicol Sci ; 199(2): 332-348, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38544285

RESUMEN

Exposure to wildfire smoke is associated with both acute and chronic cardiopulmonary illnesses, which are of special concern for wildland firefighters who experience repeated exposure to wood smoke. It is necessary to better understand the underlying pathophysiology by which wood smoke exposure increases pulmonary disease burdens in this population. We hypothesize that wood smoke exposure produces pulmonary dysfunction, lung inflammation, and gene expression profiles associated with future pulmonary complications. Male Long-Evans rats were intermittently exposed to smoldering eucalyptus wood smoke at 2 concentrations, low (11.0 ± 1.89 mg/m3) and high (23.7 ± 0.077 mg/m3), over a 2-week period. Whole-body plethysmography was measured intermittently throughout. Lung tissue and lavage fluid were collected 24 h after the final exposure for transcriptomics and metabolomics. Increasing smoke exposure upregulated neutrophils and select cytokines in the bronchoalveolar lavage fluid. In total, 3446 genes were differentially expressed in the lungs of rats in the high smoke exposure and only 1 gene in the low smoke exposure (Cd151). Genes altered in the high smoke group reflected changes to the Eukaryotic Initiation Factor 2 stress and oxidative stress responses, which mirrored metabolomics analyses. xMWAS-integrated analysis revealed that smoke exposure significantly altered pathways associated with oxidative stress, lung morphogenesis, and tumor proliferation pathways. These results indicate that intermittent, 2-week exposure to eucalyptus wood smoke leads to transcriptomic and metabolic changes in the lung that may predict future lung disease development. Collectively, these findings provide insight into cellular signaling pathways that may contribute to the chronic pulmonary conditions observed in wildland firefighters.


Asunto(s)
Eucalyptus , Pulmón , Ratas Long-Evans , Humo , Animales , Masculino , Humo/efectos adversos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Madera , Ratas , Líquido del Lavado Bronquioalveolar/química , Metaboloma/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Exposición por Inhalación/efectos adversos , Citocinas/metabolismo , Citocinas/genética
16.
Reprod Toxicol ; 128: 108631, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830453

RESUMEN

Epidemiological evidence suggests the potential for air pollutants to induce male reproductive toxicity. In experimental studies, exposure to ozone during sensitive windows in the sperm lifecycle has been associated with impaired sperm motility. Subsequently, we sought to investigate the effects of episodic exposure to ozone during sperm maturation in the rat. Long-Evans rats were exposed to either filtered air or ozone (0.4 or 0.8 ppm) for five non-consecutive days over two weeks. Ozone exposure did not impact male reproductive organ weights or sperm motility ∼24 hours following the final exposure. Furthermore, circulating sex hormones remained unchanged despite increased T3 and T4 in the 0.8 ppm group. While there was indication of altered adrenergic signaling attributable to ozone exposure in the testis, there were minimal impacts on small non-coding RNAs detected in cauda sperm. Only two piwi-interacting RNAs (piRNAs) were altered in the mature sperm of ozone-exposed rats (piR-rno-346434 and piR-rno-227431). Data across all rats were next analyzed to identify any non-coding RNAs that may be correlated with reduced sperm motility. A total of 7 microRNAs (miRNAs), 8 RNA fragments, and 1682 piRNAs correlated well with sperm motility. Utilizing our exposure paradigm herein, we were unable to substantiate the relationship between ozone exposure during maturation with sperm motility. However, these approaches served to identify a suite of non-coding RNAs that were associated with sperm motility in rats. With additional investigation, these RNAs may prove to have functional roles in the acquisition of motility or be unique biomarkers for male reproductive toxicity.

17.
Br J Neurosci Nurs ; 19(Sup5): S24-S32, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38812878

RESUMEN

Dehydration after stroke is associated with poor health outcomes, increased mortality, and poses a significant economic burden to health services. Yet research suggests that monitoring and assessment of hydration status is not routinely undertaken. In this commentary, we critically appraise a systematic review which aimed to synthesise the existing evidence regarding diagnosis and treatment of dehydration after stroke. The review discusses common measures of dehydration, describes studies evaluating rehydration treatments, and highlights the link between dehydration and poorer health outcomes in both human and animal studies. The reviewers suggest, future research should focus on determining a single, validated, objective measure to clinically diagnose dehydration in stroke patients. Research designs should include clearly defined patient characteristics, type and severity of stroke, and type and time point of dehydration measurement, to enable comparison between studies. Management of hydration status is a crucial element of acute stroke care which should be routinely practiced.

18.
Toxicol Sci ; 191(1): 106-122, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36269214

RESUMEN

Recent epidemiological findings link asthma to adverse cardiovascular responses. Yet, the precise cardiovascular impacts of asthma have been challenging to disentangle from the potential cardiovascular effects caused by asthma medication. The purpose of this study was to determine the impacts of allergic airways disease alone on cardiovascular function in an experimental model. Female Wistar rats were intranasally sensitized and then challenged once per week for 5 weeks with saline vehicle or a mixture of environmental allergens (ragweed, house dust mite, and Aspergillus fumigatus). Ventilatory and cardiovascular function, measured using double-chamber plethysmography and implantable blood pressure (BP) telemetry and cardiovascular ultrasound, respectively, were assessed before sensitization and after single and final allergen challenge. Responses to a single 0.5 ppm ozone exposure and to the cardiac arrhythmogenic agent aconitine were also assessed after final challenge. A single allergen challenge in sensitized rats increased tidal volume and specific airways resistance in response to provocation with methacholine and increased bronchoalveolar lavage fluid (BALF) eosinophils, neutrophils, lymphocytes, cytokines interleukin (IL)-4, IL-5, IL-10, IL-1ß, tumor necrosis factor-α, and keratinocyte chemoattract-growth-related oncogene characteristic of allergic airways responses. Lung responses after final allergen challenge in sensitized rats were diminished, although ozone exposure increased BALF IL-6, IL-13, IL-1 ß, and interferon-γ and modified ventilatory responses only in the allergen group. Final allergen challenge also increased systolic and mean arterial BP, stroke volume, cardiac output, end-diastolic volume, sensitivity to aconitine-induced cardiac arrhythmia, and cardiac gene expression with lesser effects after a single challenge. These findings demonstrate that allergic airways responses may increase cardiovascular risk in part by altering BP and myocardial function and by causing cardiac electrical instability.


Asunto(s)
Asma , Enfermedades Cardiovasculares , Hipersensibilidad , Ozono , Ratas , Femenino , Animales , Eosinófilos/patología , Aconitina , Enfermedades Cardiovasculares/patología , Ratas Wistar , Factores de Riesgo , Pulmón , Citocinas , Alérgenos/toxicidad , Líquido del Lavado Bronquioalveolar , Factores de Riesgo de Enfermedad Cardiaca
19.
Environ Health Perspect ; 130(12): 127006, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36542476

RESUMEN

BACKGROUND: Inhaled irritant air pollutants may trigger stress-related metabolic dysfunction associated with altered circulating adrenal-derived hormones. OBJECTIVES: We used implantable telemetry in rats to assess real-time changes in circulating glucose during and after exposure to ozone and mechanistically linked responses to neuroendocrine stress hormones. METHODS: First, using a cross-over design, we monitored glucose during ozone exposures (0.0, 0.2, 0.4, and 0.8 ppm) and nonexposure periods in male Wistar Kyoto rats implanted with glucose telemeters. A second cohort of unimplanted rats was exposed to ozone (0.0, 0.4 or 0.8 ppm) for 30 min, 1 h, 2 h, or 4 h with hormones measured immediately post exposure. We assessed glucose metabolism in sham and adrenalectomized rats, with or without supplementation of adrenergic/glucocorticoid receptor agonists, and in a separate cohort, antagonists. RESULTS: Ozone (0.8 ppm) was associated with significantly higher blood glucose and lower core body temperature beginning 90 min into exposure, with reversal of effects 4-6 h post exposure. Glucose monitoring during four daily 4-h ozone exposures revealed duration of glucose increases, adaptation, and diurnal variations. Ozone-induced glucose changes were preceded by higher levels of adrenocorticotropic hormone, corticosterone, and epinephrine but lower levels of thyroid-stimulating hormone, prolactin, and luteinizing hormones. Higher glucose and glucose intolerance were inhibited in rats that were adrenalectomized or treated with adrenergic plus glucocorticoid receptor antagonists but exacerbated by agonists. DISCUSSION: We demonstrated the temporality of neuroendocrine-stress-mediated biological sequalae responsible for ozone-induced glucose metabolic dysfunction and mechanism in a rodent model. Stress hormones assessment with real-time glucose monitoring may be useful in identifying interactions among irritant pollutants and stress-related illnesses. https://doi.org/10.1289/EHP11088.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Ratas , Masculino , Animales , Glucosa , Receptores de Glucocorticoides , Automonitorización de la Glucosa Sanguínea , Irritantes , Glucemia , Ratas Endogámicas WKY , Corticosterona , Ozono/toxicidad , Contaminantes Atmosféricos/toxicidad , Adrenérgicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA