Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 306(2): 255-61, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17126359

RESUMEN

Adhesion forces between tetrahydrofuran (THF) hydrate particles in n-decane were measured using an improved micromechanical technique. The experiments were performed at atmospheric pressure over the temperature range 261-275 K. The observed forces and trends were explained by a capillary bridge between the particles. The adhesion force of hydrates was directly proportional to the contact force and contact time. A scoping study examined the effects of temperature, anti-agglomerants, and interfacial energy on the particle adhesion forces. The adhesion force of hydrates was found to be directly proportional to interfacial energy of the surrounding liquid, and to increase with temperature. Both sorbitan monolaurate (Span20) and poly-N-vinyl caprolactam (PVCap) decreased the adhesion force between the hydrate particles.

2.
J Phys Chem B ; 110(34): 17121-5, 2006 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-16928007

RESUMEN

The hydrogen storage capacity of binary THF-H(2) clathrate hydrate has been determined as a function of formation pressure, THF composition, and time. The amount of hydrogen stored in the stoichiometric hydrate increases with pressure and exhibits asymptotic (Langmuir) behavior to approximately 1.0 wt % H(2). This hydrogen concentration corresponds to one hydrogen molecule occupying each of the small 5(12) cavities and one THF molecule in each large 5(12)6(4) cavity in the hydrate framework. Contrary to previous reports, hydrogen storage was not increased upon decreasing the THF concentration below the stoichiometric 5.6 mol % solution to 0.5 mol %, at constant pressure, even after one week. This provides strong evidence that THF preferentially occupies the large 5(12)6(4) cavity over hydrogen, for the range of experimental conditions tested. The maximum amount of hydrogen stored in this binary hydrate was about 1.0 wt % at moderate pressure (<60 MPa) and is independent of the initial THF concentration over the range of conditions tested.

3.
J Colloid Interface Sci ; 277(2): 335-41, 2004 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-15341844

RESUMEN

Particle-particle pulloff adherence forces were measured as a function of temperature in the ice/n-decane/ice and tetrahydrofuran (THF) hydrate/n-decane/THF hydrate systems using a newly developed micromechanical testing technique. Experiments using approximately 200 microm radius particles were performed at atmospheric pressure over the temperature range 263-275 K. The ice and hydrate particles displayed very similar behavior. While the measured adherence forces had significant variation, the shapes of the cumulative force distribution curves were similar among the different sets of experiments. The measured adherence forces distributions shifted to lower force values as the temperature was decreased from the solid melting temperature. The observed forces and trends were explained by the capillary cohesion of rough surfaces, with the capillary bridging liquid being stabilized below its freezing point by the negative curvature of the bridging liquid/n-decane interface.


Asunto(s)
Alcanos/química , Furanos/química , Temperatura , Hielo , Tamaño de la Partícula , Propiedades de Superficie , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA