Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 323(2): H336-H349, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35749718

RESUMEN

Aging is a nonmodifiable risk factor for cardiovascular disease associated with arterial stiffening and endothelial dysfunction. We hypothesized that sex differences exist in vascular aging processes and would be attenuated by global deletion of the G protein-coupled estrogen receptor. Blood pressure was measured by tail-cuff plethysmography, pulse wave velocity (PWV) and echocardiography were assessed with high-resolution ultrasound, and small vessel reactivity was measured using wire myography in adult (25 wk) and middle-aged (57 wk) male and female mice. Adult female mice displayed lower blood pressure and PWV, but this sex difference was absent in middle-aged mice. Aging significantly increased PWV but not blood pressure in both sexes. Adult female carotids were more distensible than males, but this sex difference was lost during aging. Acetylcholine-induced relaxation was greater in female than male mice at both ages, and only males showed aging-induced changes in cardiac hypertrophy and function. GPER deletion removed the sex difference in PWV and ex vivo stiffness in adult mice. The sex difference in blood pressure was absent in KO mice and was associated with endothelial dysfunction in females. These findings indicate that the impact of aging on arterial stiffening and endothelial function is not the same in male and female mice. Moreover, nongenomic estrogen signaling through GPER impacted vascular phenotype differently in male and female mice. Delineating sex differences in vascular changes during healthy aging is an important first step in improving early detection and sex-specific treatments in our aging population.NEW & NOTEWORTHY Indices of vascular aging were different in male and female mice. Sex differences in pulse wave velocity, blood pressure, and large artery stiffness were abrogated in middle-aged mice, but the female advantage in resistance artery vasodilator function was maintained. GPER deletion abrogated these sex differences and significantly reduced endothelial function in adult female mice. Additional studies are needed to characterize sex differences in vascular aging to personalize early detection and treatment for vascular diseases.


Asunto(s)
Análisis de la Onda del Pulso , Rigidez Vascular , Animales , Presión Sanguínea/fisiología , Arterias Carótidas/diagnóstico por imagen , Femenino , Masculino , Ratones , Receptores Acoplados a Proteínas G/genética , Caracteres Sexuales , Rigidez Vascular/fisiología
2.
J Biomech Eng ; 144(6)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35425969

RESUMEN

Higher reproductive age is associated with an increased risk of gestational diabetes, pre-eclampsia, and severe vaginal tearing during delivery. Further, menopause is associated with vaginal stiffening. However, the mechanical properties of the vagina during reproductive aging before the onset of menopause are unknown. Therefore, the first objective of this study was to quantify the biaxial mechanical properties of the nulliparous murine vagina with reproductive aging. Menopause is further associated with a decrease in elastic fiber content, which may contribute to vaginal stiffening. Hence, our second objective was to determine the effect of elastic fiber disruption on the biaxial vaginal mechanical properties. To accomplish this, vaginal samples from CD-1 mice aged 2-14 months underwent extension-inflation testing protocols (n = 64 total; n = 16/age group). Then, half of the samples were randomly allocated to undergo elastic fiber fragmentation via elastase digestion (n = 32 total; 8/age group) to evaluate the role of elastic fibers. The material stiffness increased with reproductive age in both the circumferential and axial directions within the control and elastase-treated vaginas. The vagina demonstrated anisotropic mechanical behavior, and anisotropy increased with age. In summary, vaginal remodeling with reproductive age included increased direction-dependent material stiffness, which further increased following elastic fiber disruption. Further work is needed to quantify vaginal remodeling during pregnancy and postpartum with reproductive aging to better understand how age-related vaginal remodeling may contribute to an increased risk of vaginal tearing.


Asunto(s)
Pelvis , Vagina , Envejecimiento , Animales , Anisotropía , Femenino , Ratones , Elastasa Pancreática , Embarazo , Estrés Mecánico
3.
J Biomech Eng ; 143(12)2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494082

RESUMEN

The vagina is a viscoelastic fibromuscular organ that provides support to the pelvic organs. The viscoelastic properties of the vagina are understudied but may be critical for pelvic stability. Most studies evaluate vaginal viscoelasticity under a single uniaxial load; however, the vagina is subjected to dynamic multiaxial loading in the body. It is unknown how varied multiaxial loading conditions affect vaginal viscoelastic behavior and which microstructural processes dictate the viscoelastic response. Therefore, the objective was to develop methods using extension-inflation protocols to quantify vaginal viscoelastic creep under various circumferential and axial loads. Then, the protocol was applied to quantify vaginal creep and collagen microstructure in the fibulin-5 wildtype and haploinsufficient vaginas. To evaluate pressure-dependent creep, the fibulin-5 wildtype and haploinsufficient vaginas (n = 7/genotype) were subjected to various constant pressures at the physiologic length for 100 s. For axial length-dependent creep, the vaginas (n = 7/genotype) were extended to various fixed axial lengths then subjected to the mean in vivo pressure for 100 s. Second-harmonic generation imaging was performed to quantify collagen fiber organization and undulation (n = 3/genotype). Increased pressure significantly increased creep strain in the wildtype, but not the haploinsufficient vagina. The axial length did not significantly affect the creep rate or strain in both genotypes. Collagen undulation varied through the depth of the subepithelium but not between genotypes. These findings suggest that the creep response to loading may vary with biological processes and pathologies, therefore, evaluating vaginal creep under various circumferential loads may be important to understand vaginal function.


Asunto(s)
Haploinsuficiencia , Vagina , Animales , Elasticidad , Femenino , Ratones , Pelvis , Estrés Mecánico , Viscosidad
4.
J Biomech Eng ; 141(2)2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30453317

RESUMEN

Although the underlying mechanisms of pelvic organ prolapse (POP) remain unknown, disruption of elastic fiber metabolism within the vaginal wall extracellular matrix (ECM) has been highly implicated. It has been hypothesized that elastic fiber fragmentation correlates to decreased structural integrity and increased risk of prolapse; however, the mechanisms by which elastic fiber damage may contribute to prolapse are poorly understood. Furthermore, the role of elastic fibers in normal vaginal wall mechanics has not been fully ascertained. Therefore, the objective of this study is to investigate the contribution of elastic fibers to murine vaginal wall mechanics. Vaginal tissue from C57BL/6 female mice was mechanically tested using biaxial extension-inflation protocols before and after intraluminal exposure to elastase. Elastase digestion induced marked changes in the vaginal geometry, and biaxial mechanical properties, suggesting that elastic fibers may play an important role in vaginal wall mechanical function. Additionally, a constitutive model that considered two diagonal families of collagen fibers with a slight preference toward the circumferential direction described the data reasonably well before and after digestion. The present findings may be important to determine the underlying structural and mechanical mechanisms of POP, and aid in the development of growth and remodeling models for improved assessment and prediction of changes in structure-function relationships with prolapse development.

5.
Am J Physiol Heart Circ Physiol ; 315(5): H1073-H1087, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30028199

RESUMEN

This review discusses sexual dimorphism in arterial stiffening, disease pathology interactions, and the influence of sex on mechanisms and pathways. Arterial stiffness predicts cardiovascular mortality independent of blood pressure. Patients with increased arterial stiffness have a 48% higher risk for developing cardiovascular disease. Like other cardiovascular pathologies, arterial stiffness is sexually dimorphic. Young women have lower stiffness than aged-matched men, but this sex difference reverses during normal aging. Estrogen therapy does not attenuate progressive stiffening in postmenopausal women, indicating that currently prescribed drugs do not confer protection. Although remodeling of large arteries is a protective adaptation to higher wall stress, arterial stiffening increases afterload to the left ventricle and transmits higher pulsatile pressure to smaller arteries and target organs. Moreover, an increase in aortic stiffness may precede or exacerbate hypertension, particularly during aging. Additional studies are needed to elucidate the mechanisms by which females are protected from arterial stiffness to provide insight into its mechanisms and, ultimately, therapeutic targets for treating this pathology.


Asunto(s)
Presión Arterial , Arterias/fisiopatología , Enfermedades Cardiovasculares/fisiopatología , Rigidez Vascular , Factores de Edad , Animales , Arterias/efectos de los fármacos , Arterias/metabolismo , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/prevención & control , Modelos Animales de Enfermedad , Terapia de Reemplazo de Estrógeno , Estrógenos/sangre , Femenino , Disparidades en el Estado de Salud , Humanos , Masculino , Menopausia , Factores Protectores , Factores de Riesgo , Caracteres Sexuales , Factores Sexuales , Testosterona/sangre
6.
Breast Cancer Res Treat ; 169(2): 381-390, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29392581

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC) subtypes are clinically aggressive and cannot be treated with targeted therapeutics commonly used in other breast cancer subtypes. The claudin-low (CL) molecular subtype of TNBC has high rates of metastases, chemoresistance and recurrence. There exists an urgent need to identify novel therapeutic targets in TNBC; however, existing models utilized in target discovery research are limited. Patient-derived xenograft (PDX) models have emerged as superior models for target discovery experiments because they recapitulate features of patient tumors that are limited by cell-line derived xenograft methods. METHODS: We utilize immunohistochemistry, qRT-PCR and Western Blot to visualize tumor architecture, cellular composition, genomic and protein expressions of a new CL-TNBC PDX model (TU-BcX-2O0). We utilize tissue decellularization techniques to examine extracellular matrix composition of TU-BcX-2O0. RESULTS: Our laboratory successfully established a TNBC PDX tumor, TU-BCX-2O0, which represents a CL-TNBC subtype and maintains this phenotype throughout subsequent passaging. We dissected TU-BCx-2O0 to examine aspects of this complex tumor that can be targeted by developing therapeutics, including the whole and intact breast tumor, specific cell populations within the tumor, and the extracellular matrix. CONCLUSIONS: Here, we characterize a claudin-low TNBC patient-derived xenograft model that can be utilized for therapeutic research studies.


Asunto(s)
Proliferación Celular/genética , Claudinas/genética , Recurrencia Local de Neoplasia/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Recurrencia Local de Neoplasia/patología , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Biomech Eng ; 139(10)2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28787477

RESUMEN

Progress toward understanding the underlying mechanisms of pelvic organ prolapse (POP) is limited, in part, due to a lack of information on the biomechanical properties and microstructural composition of the vaginal wall. Compromised vaginal wall integrity is thought to contribute to pelvic floor disorders; however, normal structure-function relationships within the vaginal wall are not fully understood. In addition to the information produced from uniaxial testing, biaxial extension-inflation tests performed over a range of physiological values could provide additional insights into vaginal wall mechanical behavior (i.e., axial coupling and anisotropy), while preserving in vivo tissue geometry. Thus, we present experimental methods of assessing murine vaginal wall biaxial mechanical properties using extension-inflation protocols. Geometrically intact vaginal samples taken from 16 female C57BL/6 mice underwent pressure-diameter and force-length preconditioning and testing within a pressure-myograph device. A bilinear curve fit was applied to the local stress-stretch data to quantify the transition stress and stretch as well as the toe- and linear-region moduli. The murine vaginal wall demonstrated a nonlinear response resembling that of other soft tissues, and evaluation of bilinear curve fits suggests that the vagina exhibits pseudoelasticity, axial coupling, and anisotropy. The protocols developed herein permit quantification of biaxial tissue properties. These methods can be utilized in future studies in order to assess evolving structure-function relationships with respect to aging, the onset of prolapse, and response to potential clinical interventions.


Asunto(s)
Ensayo de Materiales/métodos , Fenómenos Mecánicos , Vagina , Animales , Anisotropía , Femenino , Ratones , Ratones Endogámicos C57BL , Presión , Estrés Mecánico
8.
Am J Physiol Heart Circ Physiol ; 310(8): H953-61, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26873963

RESUMEN

The mRen2 female rat is an estrogen- and salt-sensitive model of hypertension that reflects the higher pressure and salt sensitivity associated with menopause. We previously showed that the G protein-coupled estrogen receptor (GPER) mediates estrogenic effects in this model. The current study hypothesized that GPER protects against vascular injury during salt loading. Intact mRen2 female rats were fed a normal (NS; 0.5% Na(+)) or high-salt diet (HS; 4% Na(+)) for 10 wk, which significantly increased systolic blood pressure (149 ± 5 vs. 224 ± 8 mmHg;P< 0.001). Treatment with the selective GPER agonist G-1 for 2 wk did not alter salt-sensitive hypertension (216 ± 4 mmHg;P> 0.05) or ex vivo vascular responses to angiotensin II or phenylephrine (P> 0.05). However, G-1 significantly attenuated salt-induced aortic remodeling assessed by media-to-lumen ratio (NS: 0.43; HS+veh: 0.89; HS+G-1: 0.61;P< 0.05). Aortic thickening was not accompanied by changes in collagen, elastin, or medial proliferation. However, HS induced increases in medial layer glycosaminoglycans (0.07 vs. 0.42 mm(2);P< 0.001) and lipid peroxidation (0.11 vs. 0.51 mm(2);P< 0.01), both of which were reduced by G-1 (0.20 mm(2)and 0.23 mm(2); both P< 0.05). We conclude that GPER's beneficial actions in the aorta of salt-loaded mRen2 females occur independently of changes in blood pressure and vasoreactivity. GPER-induced attenuation of aortic remodeling was associated with a reduction in oxidative stress and decreased accumulation of glycosaminoglycans. Endogenous activation of GPER may protect females from salt- and pressure-induced vascular damage.


Asunto(s)
Aorta/efectos de los fármacos , Ciclopentanos/farmacología , Hipertensión/metabolismo , Quinolinas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Cloruro de Sodio Dietético , Remodelación Vascular/efectos de los fármacos , Angiotensina II/farmacología , Animales , Animales Congénicos , Aorta/metabolismo , Aorta/patología , Aorta/fisiopatología , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Genotipo , Glicosaminoglicanos/metabolismo , Hipertensión/genética , Hipertensión/patología , Hipertensión/fisiopatología , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fenilefrina/farmacología , Ratas Transgénicas , Receptores Acoplados a Proteínas G/metabolismo , Renina/genética , Renina/metabolismo , Factores de Tiempo
9.
Acta Biomater ; 175: 186-198, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38151068

RESUMEN

Advanced maternal age during pregnancy is associated with increased risk of vaginal tearing during delivery and maladaptive postpartum healing. Although the underlying mechanisms of age-related vaginal injuries are not fully elucidated, changes in vaginal microstructure may contribute. Smooth muscle cells promote the contractile nature of the vagina and contribute to pelvic floor stability. While menopause is associated with decreased vaginal smooth muscle content, whether contractile changes occur before the onset of menopause remains unknown. Therefore, the first objective of this study was to quantify the active mechanical behavior of the murine vagina with age. Further, aging is associated with decreased vaginal elastin content. As such, the second objective was to determine if elastic fiber disruption alters vaginal contractility. Vaginal samples from mice aged 2-14 months were used in maximum contractility experiments and biaxial extension-inflation protocols. To evaluate the role of elastic fibers with age, half of the vaginal samples were randomly allocated to enzymatic elastic fiber disruption. Contractile potential decreased and vaginal material stiffness increased with age. These age-related changes in smooth muscle function may be due, in part, to changes in microstructural composition or contractile gene expression. Furthermore, elastic fiber disruption had a diminished effect on smooth muscle contractility in older mice. This suggests a decreased functional role of elastic fibers with age. Quantifying the age-dependent mechanical contribution of smooth muscle cells and elastic fibers to vaginal properties provides a first step towards better understanding how age-related changes in vaginal structure may contribute to tissue integrity and healing. STATEMENT OF SIGNIFICANCE: Advanced maternal age at the time of pregnancy is linked to increased risks of vaginal tearing during delivery, postpartum hemorrhaging, and the development of pelvic floor disorders. While the underlying causes of increased vaginal injuries with age and associated pathologies remain unclear, changes in vaginal microstructure, such as elastic fibers and smooth muscle cells, may contribute. Menopause is associated with fragmented elastic fibers and decreased smooth muscle content; however, how reproductive aging affects changes in the vaginal composition and the mechanical properties remains unknown. Quantifying the mechanical contribution of smooth muscle cells and elastic fibers to vaginal properties with age will advance understanding of the potential structural causes of age-related changes to tissue integrity and healing.


Asunto(s)
Tejido Elástico , Vagina , Embarazo , Femenino , Ratones , Animales , Tejido Elástico/metabolismo , Músculo Liso , Miocitos del Músculo Liso , Contracción Muscular/fisiología
10.
bioRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352586

RESUMEN

Pelvic organ prolapse (POP) is a gynecological disorder described by the descent of superior pelvic organs into or out of the vagina as a consequence of disrupted muscles and tissue. A thorough understanding of the etiology of POP is limited by the availability of clinically relevant samples, restricting longitudinal POP studies on soft-tissue biomechanics and structure to POP-induced models such as fibulin-5 knockout (FBLN5-/-) mice. Despite being a principal constituent in the extracellular matrix, little is known about structural perturbations to collagen networks in the FBLN5-/- mouse cervix. We identify significantly different collagen network populations in normal and prolapsed cervical cross-sections using two label-free, nonlinear microscopy techniques. Collagen in the prolapsed mouse cervix tends to be more isotropic, and displays reduced alignment persistence via 2-D Fourier Transform analysis of images acquired using second harmonic generation microscopy. Furthermore, coherent Raman hyperspectral imaging revealed elevated disorder in the secondary structure of collagen in prolapsed tissues. Our results underscore the need for in situ multimodal monitoring of collagen organization to improve POP predictive capabilities.

11.
Biomed Opt Express ; 15(5): 2863-2875, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855688

RESUMEN

Pelvic organ prolapse (POP) is a gynecological disorder described by the descent of superior pelvic organs into or out of the vagina as a consequence of disrupted muscles and tissue. A thorough understanding of the etiology of POP is limited by the availability of clinically relevant samples, restricting longitudinal POP studies on soft-tissue biomechanics and structure to POP-induced models such as fibulin-5 knockout (FBLN5-/- ) mice. Despite being a principal constituent in the extracellular matrix, little is known about structural perturbations to collagen networks in the FBLN5-/- mouse cervix. We identify significantly different collagen network populations in normal and prolapsed cervical cross-sections using two label-free, nonlinear microscopy techniques. Collagen in the prolapsed mouse cervix tends to be more isotropic, and displays reduced alignment persistence via 2-D Fourier transform analysis of images acquired using second harmonic generation microscopy. Furthermore, coherent Raman hyperspectral imaging revealed elevated disorder in the secondary structure of collagen in prolapsed tissues. Our results underscore the need for in situ multimodal monitoring of collagen organization to improve POP predictive capabilities.

12.
Sci Rep ; 14(1): 586, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182631

RESUMEN

Mammalian pregnancy requires gradual yet extreme remodeling of the reproductive organs to support the growth of the embryos and their birth. After delivery, the reproductive organs return to their non-pregnant state. As pregnancy has traditionally been understudied, there are many unknowns pertaining to the mechanisms behind this remarkable remodeling and repair process which, when not successful, can lead to pregnancy-related complications such as maternal trauma, pre-term birth, and pelvic floor disorders. This study presents the first longitudinal imaging data that focuses on revealing anatomical alterations of the vagina, cervix, and uterine horns during pregnancy and postpartum using the mouse model. By utilizing advanced magnetic resonance imaging (MRI) technology, T1-weighted and T2-weighted images of the reproductive organs of three mice in their in vivo environment were collected at five time points: non-pregnant, mid-pregnant (gestation day: 9-10), late pregnant (gestation day: 16-17), postpartum (24-72 h after delivery) and three weeks postpartum. Measurements of the vagina, cervix, and uterine horns were taken by analyzing MRI segmentations of these organs. The cross-sectional diameter, length, and volume of the vagina increased in late pregnancy and then returned to non-pregnant values three weeks after delivery. The cross-sectional diameter of the cervix decreased at mid-pregnancy before increasing in late pregnancy. The volume of the cervix peaked at late pregnancy before shortening by 24-72 h postpartum. As expected, the uterus increased in cross-sectional diameter, length, and volume during pregnancy. The uterine horns decreased in size postpartum, ultimately returning to their average non-pregnant size three weeks postpartum. The newly developed methods for acquiring longitudinal in vivo MRI scans of the murine reproductive system can be extended to future studies that evaluate functional and morphological alterations of this system due to pathologies, interventions, and treatments.


Asunto(s)
Imagen por Resonancia Magnética , Útero , Femenino , Humanos , Embarazo , Animales , Ratones , Útero/diagnóstico por imagen , Proyectos de Investigación , Vagina/diagnóstico por imagen , Periodo Posparto , Mamíferos
13.
J Mech Behav Biomed Mater ; 140: 105702, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36764168

RESUMEN

Smooth muscle cells contribute to the mechanical function of various soft tissues, however, their contribution to the viscoelastic response when subjected to multiaxial loading remains unknown. The vagina is a fibromuscular viscoelastic organ that is exposed to prolonged and increased pressures with daily activities and physiologic processes such as vaginal birth. The vagina changes in geometry over time under prolonged pressure, known as creep. Vaginal smooth muscle cells may contribute to creep. This may be critical for the function of vaginal and other soft tissues that experience fluctuations in their biomechanical environment. Therefore, the objective of this study was to develop methods to evaluate the contribution of smooth muscle to vaginal creep under multiaxial loading using extension - inflation tests. The vaginas from wildtype mice (C57BL/6 × 129SvEv; 3-6 months; n = 10) were stimulated with various concentrations of potassium chloride then subjected to the measured in vivo pressure (7 mmHg) for 100 s. In a different cohort of mice (n = 5), the vagina was stimulated with a single concentration of potassium chloride then subjected to 5 and 15 mmHg. A laser micrometer measured vaginal outer diameter in real-time. Immunofluorescence evaluated the expression of alpha-smooth muscle actin and myosin heavy chain in the vaginal muscularis (n = 6). When smooth muscle contraction was activated, vaginal creep behavior increased compared to the relaxed state. However, increased pressure decreased the active creep response. This study demonstrated that extension - inflation protocols can be used to evaluate smooth muscle contribution to the viscoelastic response of tubular soft tissues.


Asunto(s)
Contracción Muscular , Músculo Liso , Femenino , Ratones , Animales , Cloruro de Potasio/metabolismo , Ratones Endogámicos C57BL , Músculo Liso/fisiología , Contracción Muscular/fisiología , Vagina/fisiología
14.
J Biomech Eng ; 134(3): 031007, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22482687

RESUMEN

Repeatedly and consistently measuring the mechanical properties of tendon is important but presents a challenge. Preconditioning can provide tendons with a consistent loading history to make comparisons between groups from mechanical testing experiments. However, the specific mechanisms occurring during preconditioning are unknown. Previous studies have suggested that microstructural changes, such as collagen fiber re-alignment, may be a result of preconditioning. Local collagen fiber re-alignment is quantified throughout tensile mechanical testing using a testing system integrated with a polarized light setup, consisting of a backlight, 90 deg-offset rotating polarizer sheets on each side of the test sample, and a digital camera, in a rat supraspinatus tendon model, and corresponding mechanical properties are measured. Local circular variance values are compared throughout the mechanical test to determine if and where collagen fiber re-alignment occurred. The inhomogeneity of the tendon is examined by comparing local circular variance values, optical moduli and optical transition strain values. Although the largest amount of collagen fiber re-alignment was found during preconditioning, significant re-alignment was also demonstrated in the toe and linear regions of the mechanical test. No significant changes in re-alignment were seen during stress relaxation. The insertion site of the supraspinatus tendon demonstrated a lower linear modulus and a more disorganized collagen fiber distribution throughout all mechanical testing points compared to the tendon midsubstance. This study identified a correlation between collagen fiber re-alignment and preconditioning and suggests that collagen fiber re-alignment may be a potential mechanism of preconditioning and merits further investigation. In particular, the conditions necessary for collagen fibers to re-orient away from the direction of loading and the dependency of collagen reorganization on its initial distribution must be examined.


Asunto(s)
Colágeno/metabolismo , Ensayo de Materiales/métodos , Músculo Esquelético/metabolismo , Estrés Mecánico , Tendones/metabolismo , Animales , Fenómenos Biomecánicos , Ratas , Ratas Sprague-Dawley , Resistencia a la Tracción
15.
J Biomech Eng ; 134(4): 041004, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22667679

RESUMEN

Crimp morphology is believed to be related to tendon mechanical behavior. While crimp has been extensively studied at slack or nondescript load conditions in tendon, few studies have examined crimp at specific, quantifiable loading conditions. Additionally, the effect of the number of cycles of preconditioning on collagen fiber crimp behavior has not been examined. Further, the dependence of collagen fiber crimp behavior on location and developmental age has not been examined in the supraspinatus tendon. Local collagen fiber crimp frequency is quantified throughout tensile mechanical testing using a flash freezing method immediately following the designated loading protocol. Samples are analyzed quantitatively using custom software and semi-quantitatively using a previously established method to validate the quantitative software. Local collagen fiber crimp frequency values are compared throughout the mechanical test to determine where collagen fiber frequency changed. Additionally, the effect of the number of preconditioning cycles is examined compared to the preload and toe-region frequencies to determine if increasing the number of preconditioning cycles affects crimp behavior. Changes in crimp frequency with age and location are also examined. Decreases in collagen fiber crimp frequency were found at the toe-region at all ages. Significant differences in collagen fiber crimp frequency were found between the preload and after preconditioning points at 28 days. No changes in collagen fiber crimp frequency were found between locations or between 10 and 28 days old. Local collagen fiber crimp frequency throughout mechanical testing in a postnatal developmental mouse SST model was measured. Results confirmed that the uncrimping of collagen fibers occurs primarily in the toe-region and may contribute to the tendon's nonlinear behavior. Additionally, results identified changes in collagen fiber crimp frequency with an increasing number of preconditioning cycles at 28 days, which may have implications on the measurement of mechanical properties and identifying a proper reference configuration.


Asunto(s)
Colágeno/química , Miembro Anterior , Ensayo de Materiales , Fenómenos Mecánicos , Tendones/crecimiento & desarrollo , Animales , Fenómenos Biomecánicos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos
16.
J Shoulder Elbow Surg ; 21(12): 1687-93, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22484390

RESUMEN

BACKGROUND: The subscapularis is an important mover and stabilizer of the glenohumeral joint. Since the advent of shoulder arthroscopy, partial tears are found in 43% of rotator cuff patients. While partial tears to the upper band occur more commonly, little is known about the structure and mechanical behavior of the individual bands. Therefore, the objective of this study was to measure tensile mechanical properties, corresponding collagen fiber alignment, and histology in the upper and lower bands of the rat subscapularis tendon. MATERIALS AND METHODS: Thirty adult Sprague-Dawley rats were euthanized and subscapularis tendons dissected out for mechanical organization (n = 24) and histologic assessment (n = 6). Collagen organization was measured with a custom device during mechanical testing. RESULTS: Linear-region modulus at the insertion site was significantly lower in the upper band compared to the lower band, while no differences were found at the midsubstance location. The upper band was found to be significantly less aligned and demonstrated a more rounded cell shape than the lower band at the insertion site. DISCUSSION: This study demonstrated that the 2 bands of the subscapularis tendon have differential mechanical, organizational, and histological properties, which suggests a functional deficit exists to the upper band of the subscapularis and may be contributing to the prevalence of partial subscapularis tears. CONCLUSIONS: Clinicians should be aware that the upper band of the subscapularis tendon may be at higher risk of developing tears, based on decreased mechanical properties and a more disorganized collagen fiber distribution.


Asunto(s)
Artroscopía/métodos , Rango del Movimiento Articular , Manguito de los Rotadores/cirugía , Articulación del Hombro/cirugía , Traumatismos de los Tendones/cirugía , Animales , Modelos Animales de Enfermedad , Masculino , Ratas , Ratas Sprague-Dawley , Manguito de los Rotadores/patología , Manguito de los Rotadores/fisiopatología , Articulación del Hombro/patología , Articulación del Hombro/fisiopatología , Traumatismos de los Tendones/patología , Traumatismos de los Tendones/fisiopatología , Tendones/patología , Tendones/fisiopatología
17.
Integr Comp Biol ; 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35781491

RESUMEN

The vagina is a highly inhomogeneous, anisotropic, and viscoelastic organ that undergoes significant deformations in vivo. The mechanical attributes of this organ facilitate important physiological functions during menstruation, intercourse, and birthing. Despite the crucial mechanical role that the vagina plays within the female reproductive system, the deformations that the organ can sustain over time under constant pressure, in both the longitudinal direction (LD) and circumferential direction (CD), have not been fully characterized. This experimental study focuses on quantifying the creep properties of the vagina via ex vivo inflation testing using the rat as animal model. Toward this end, rat vaginas were subjected to three consecutively increasing constant luminal pressures (28 kPa, 55 kPa, and 83 kPa) using a custom-built experimental setup and the resulting inhomogeneous deformations were measured using the digital image correlation (DIC) method. The vagina was found to deform significantly more in the CD than the LD at any constant pressure, suggesting that the organ primarily adapts to constant pressures by significantly changing the diameter rather that the length. The change in deformation over time (i.e., creep) was significantly higher during the 1st inflation test at a constant pressure of 28 kPa than over the 2nd and 3rd inflation tests at constant pressures of 55 kPa and 83 kPa, respectively. The findings of this study on the mechanical behavior of the vagina could serve to advance our limited knowledge about the physiology and pathophysiology of this important reproductive organ.

18.
Ann Biomed Eng ; 49(8): 1874-1887, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33880630

RESUMEN

Throughout the estrus cycle, the extracellular matrix (ECM) and cervical smooth muscle cells (cSMC) coordinate to accomplish normal physiologic function in the non-pregnant cervix. While previous uniaxial experiments provide fundamental knowledge about cervical contractility and biomechanics, the specimen preparation is disruptive to native organ geometry and does not permit simultaneous assessment of circumferential and axial properties. Thus, a need remains to investigate cervical contractility and passive biomechanics within physiologic multiaxial loading. Biaxial inflation-extension experiments overcome these limitations by preserving geometry, ECM-cell interactions, and multiaxially loading the cervix. Utilizing in vivo pressure measurements and inflation-extension testing, this study presented methodology and examined maximum biaxial contractility and biomechanics in the nulliparous murine cervix. The study showed that increased pressure resulted in decreased contractile potential in the circumferential direction, however, axial contractility remained unaffected. Additionally, total change in axial stress ([Formula: see text]) increased significantly (p < 0.05) compared to circumferential stress ([Formula: see text]) with maximum contraction. However, passive stiffness was significantly greater (p < 0.01) in the circumferential direction. Overall, axial cSMC may have a critical function in maintaining cervical homeostasis during normal function. Potentially, a loss of axial contractility in the cervix during pregnancy may result in maladaptive remodeling such as cervical insufficiency.


Asunto(s)
Cuello del Útero/metabolismo , Matriz Extracelular/metabolismo , Contracción Muscular , Fuerza Muscular , Músculo Liso/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Fenómenos Biomecánicos , Femenino , Ratones
19.
Sci Rep ; 11(1): 20956, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697337

RESUMEN

The vagina plays a critical role in supporting the pelvic organs and loss of support leads to pelvic organ prolapse. It is unknown what microstructural changes influence prolapse progression nor how decreased elastic fibers contributes to vaginal remodeling and smooth muscle contractility. The objective for this study was to evaluate the effect of fibulin-5 haploinsufficiency, and deficiency with progressive prolapse on the biaxial contractile and biomechanical function of the murine vagina. Vaginas from wildtype (n = 13), haploinsufficient (n = 13), and deficient mice with grade 1 (n = 9) and grade 2 or 3 (n = 9) prolapse were explanted for biaxial contractile and biomechanical testing. Multiaxial histology (n = 3/group) evaluated elastic and collagen fiber microstructure. Western blotting quantified protein expression (n = 6/group). A one-way ANOVA or Kruskal-Wallis test evaluated statistical significance. Pearson's or Spearman's test determined correlations with prolapse grade. Axial contractility decreased with fibulin-5 deficiency and POP (p < 0.001), negatively correlated with prolapse grade (ρ = - 0.80; p < 0.001), and positively correlated with muscularis elastin area fraction (ρ = - 0.78; p = 0.004). Circumferential (ρ = 0.71; p < 0.001) and axial (ρ = 0.69; p < 0.001) vaginal wall stresses positively correlated with prolapse grade. These findings demonstrated that fibulin-5 deficiency and prolapse progression decreased vaginal contractility and increased vaginal wall stress. Future work is needed to better understand the processes that contribute to prolapse progression in order to guide diagnostic, preventative, and treatment strategies.


Asunto(s)
Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Prolapso Uterino/fisiopatología , Vagina/fisiopatología , Animales , Fenómenos Biomecánicos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Haploinsuficiencia , Humanos , Ratones , Estrés Mecánico , Prolapso Uterino/genética , Prolapso Uterino/metabolismo , Vagina/metabolismo
20.
NPJ Regen Med ; 6(1): 82, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848747

RESUMEN

Localized cartilage lesions in early osteoarthritis and acute joint injuries are usually treated surgically to restore function and relieve pain. However, a persistent clinical challenge remains in how to repair the cartilage lesions. We expressed doublecortin (DCX) in human adipose-derived stromal/stem cells (hASCs) and engineered hASCs into cartilage tissues using an in vitro 96-well pellet culture system. The cartilage tissue constructs with and without DCX expression were implanted in the knee cartilage defects of rabbits (n = 42) and monkeys (n = 12). Cohorts of animals were euthanized at 6, 12, and 24 months after surgery to evaluate the cartilage repair outcomes. We found that DCX expression in hASCs increased expression of growth differentiation factor 5 (GDF5) and matrilin 2 in the engineered cartilage tissues. The cartilage tissues with DCX expression significantly enhanced cartilage repair as assessed macroscopically and histologically at 6, 12, and 24 months after implantation in the rabbits and 24 months after implantation in the monkeys, compared to the cartilage tissues without DCX expression. These findings suggest that hASCs expressing DCX may be engineered into cartilage tissues that can be used to treat localized cartilage lesions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA