Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stud Health Technol Inform ; 173: 313-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22357009

RESUMEN

We explored how the perception of stiffness can be distorted in Minimally Invasive Surgery. We combined a mechanical simulator with a haptic device, and implemented linear springs at the tip of the simulated laparoscopic device. To explore the influence of mechanical advantage on perception, we set different values of the ratio between internal and external length of the tool. We found that a nonsymmetrical ratio causes bias in the perceived stiffness when novice tangential probing is compared to radial probing. In contrast, haptic experts did not show similar perceptual bias.


Asunto(s)
Simulación por Computador , Laparoscopía , Percepción del Tacto , Humanos , Análisis y Desempeño de Tareas
2.
IEEE Trans Haptics ; 14(3): 513-525, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33449879

RESUMEN

Haptic information can be used to create our perception of the stiffness of objects and to regulate grip force. Introducing noise into sensory inputs can create uncertainty, yet a method of creating haptic uncertainty without distorting the haptic information has yet to be discovered. Toward this end, in this article, we investigated the effect of varying haptic information between consecutive interactions with an elastic force field on stiffness perception and grip force control. In a stiffness discrimination task, participants interacted with force fields multiple times. Low, medium, and high variability levels were created by drawing the stiffness level applied in each consecutive interaction within a trial from normal distributions. Perceptual haptic uncertainty was created only by the medium variability level. Moreover, all the variability levels affected the grip force control: the modulation of the grip force with the load force decreased with repeated interactions with the force field, whereas no change in the baseline grip force was observed. Additionally, we ascertained that participants formed their perceived stiffness by calculating a weighted average of the different stiffness levels applied by a given force field. We conclude that the medium variability level can be effective in inducing uncertainty in both perception and action.


Asunto(s)
Fuerza de la Mano , Fenómenos Mecánicos , Humanos , Percepción
3.
IEEE Trans Haptics ; 14(3): 564-576, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606636

RESUMEN

Most studies of grip force control focus on the manipulation of rigid objects. However, in virtual and teleoperation applications, objects are often elastic in the pinch degree-of-freedom, and are manipulated using a handle that presents haptic feedback to the user. When designing controllers for haptic grippers, it is crucial to understand how grip force is controlled when manipulating rigid and deformable objects. Here, we used a virtual teleoperation setup with a haptic gripper interface to investigate grip force control in virtual environments. Ten participants lifted virtual objects and performed vertical, cyclic motions using a haptic gripper. We manipulated the control signal to the virtual interface, the haptic properties of the gripper, and the visual properties of the virtual objects to test their effect on the grip force control. We found that participants modulated their grip force as a function of the anticipated load force in all of the experimental conditions. The control signal and properties of the haptic gripper, but not the visual properties of the objects, affected the baseline and the extent of the grip force modulation. These results can provide design guidelines for haptic grippers that elicit natural grasping in virtual and bilateral teleoperation applications.


Asunto(s)
Fuerza de la Mano , Fenómenos Mecánicos , Retroalimentación , Humanos , Interfaz Usuario-Computador
4.
Biomed Opt Express ; 9(11): 5635-5644, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30460151

RESUMEN

Fast and reliable incision closure is critical in any surgical intervention. Common solutions are sutures and clips or adhesives, but they all present difficulties. These difficulties are especially pronounced in classical and robot-assisted minimally-invasive interventions. Laser soldering methods present a promising alternative, but their reproducibility is limited. We present a system that combines a previously reported laser soldering system with a robotic system, and demonstrate its feasibility on the incision-closure of ex-vivo mice skins. In this demonstration, we measured tearing forces of ~2.5N, 73% of the tearing force of a mouse skin without an incision. This robot-assisted laser soldering technique has the potential to make laser tissue soldering more reproducible and revolutionize surgical tissue bonding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA