Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Control Release ; 222: 97-106, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26682503

RESUMEN

We prepared a bone plate enabled with the local, sustained release of alendronate, which is a drug known to inhibit osteoclast-mediated bone resorption and also expedite the bone-remodeling activity of osteoblasts. For this, we coated a bone plate already in clinical use (PLT-1031, Inion, Finland) with a blend of alendronate and a biocompatible polymer, azidobenzoic acid-modified chitosan (i.e., Az-CH) photo-crosslinked by UV irradiation. As we performed the in vitro drug release study, the drug was released from the coating at an average rate of 4.03µg/day for 63days in a sustained manner. To examine the effect on bone regeneration, the plate was fixed on an 8mm cranial critical size defect in living rats and the newly formed bone volume was quantitatively evaluated by micro-computed tomography (micro-CT) at scheduled times over 8weeks. At week 8, the group implanted with the plate enabled with sustained delivery of alendronate showed a significantly higher volume of newly formed bone (52.78±6.84%) than the groups implanted with the plates without drug (23.6±3.81%) (p<0.05). The plate enabled with alendronate delivery also exhibited good biocompatibility on H&E staining, which was comparable to the Inion plate already in clinical use. Therefore, we suggest that a bone plate enabled with local, sustained delivery of alendronate can be a promising system with the combined functionality of bone fixation and its expedited repair.


Asunto(s)
Alendronato/administración & dosificación , Conservadores de la Densidad Ósea/administración & dosificación , Placas Óseas , Regeneración Ósea/efectos de los fármacos , Implantes Absorbibles , Alendronato/química , Alendronato/uso terapéutico , Animales , Conservadores de la Densidad Ósea/química , Conservadores de la Densidad Ósea/uso terapéutico , Línea Celular , Línea Celular Tumoral , Quitosano/análogos & derivados , Quitosano/química , Preparaciones de Acción Retardada/administración & dosificación , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/uso terapéutico , Liberación de Fármacos , Humanos , Masculino , Ratones , Ratas Sprague-Dawley , Cráneo/efectos de los fármacos , Cráneo/lesiones , Cráneo/patología , Cráneo/fisiología
2.
Tissue Eng Part A ; 21(7-8): 1237-46, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25411965

RESUMEN

The number of patients requiring flat bone transplantation continues to increase worldwide. Cell transplantation has been successfully applied clinically; however, it causes another defect site and the time requirements to harvest cells and expand them are considerable. In this study, KLD12/KLD12-SP (KLD12+KLD12-substance P [SP]) was designed to mimic endogenous tissue-healing processes. The structures of KLD12, KLD12-SP, and KLD12/KLD12-SP were observed by transmission electron microscopy and circular dichroism spectra. KLD12/KLD12-SP nanofibers (5-10 nm) were created under physiological conditions by formation of a ß-sheet structure. The ability of mesenchymal stem cells (MSCs) to recruit KLD12/KLD12-SP was observed by using an in vivo fluorescence imaging system. Labeled human bone marrow stromal cells supplied via an intravenous injection were recruited to the scaffold containing KLD12/KLD12-SP. Polylactic acid/beta-tricalcium phosphate (PLA/ß-TCP) scaffolds filled with KLD12/KLD12-SP were applied to repair calvarial defects. The composite constructs (groups: defect, PLA/ß-TCP, PLA/ß-TCP/KLD12, and PLA/ß-TCP/KLD12/KLD12-SP) were implanted into rat defect sites. Bone tissue regeneration was evaluated by observing gross morphology by hematoxylin and eosin and Masson's trichrome staining at 12 and 24 weeks after surgery. Gross morphology showed that the defect site was filled with new tissue that was integrated with host tissue in the KLD12/KLD12-SP group. In addition, from the staining data, cells were recruited to the defect site and lacunae structures formed in the KLD12/KLD12-SP group. From these results, the PLA/ß-TCP+KLD12/KLD12-SP composite construct was considered for enhancement of bone tissue regeneration without cell transplantation.


Asunto(s)
Huesos/fisiología , Nanofibras/química , Sustancia P/farmacología , Ingeniería de Tejidos/métodos , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Huesos/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Rastreo Celular , Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Endogámicos BALB C , Nanofibras/ultraestructura , Osteocalcina/metabolismo , Ratas Sprague-Dawley , Cráneo/efectos de los fármacos , Cráneo/patología , Células del Estroma/citología , Células del Estroma/efectos de los fármacos
3.
Acta Biomater ; 10(10): 4217-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25020265

RESUMEN

Despite their popular use in breast augmentation and reconstruction surgeries, the limited biocompatibility of silicone implants can induce severe side effects, including capsular contracture - an excessive foreign body reaction that forms a tight and hard fibrous capsule around the implant. This study examines the effects of using biomembrane-mimicking surface coatings to prevent capsular formations on silicone implants. The covalently attached biomembrane-mimicking polymer, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), prevented nonspecific protein adsorption and fibroblast adhesion on the silicone surface. More importantly, in vivo capsule formations around PMPC-grafted silicone implants in rats were significantly thinner and exhibited lower collagen densities and more regular collagen alignments than bare silicone implants. The observed decrease in α-smooth muscle actin also supported the alleviation of capsular formations by the biomembrane-mimicking coating. Decreases in inflammation-related cells, myeloperoxidase and transforming growth factor-ß resulted in reduced inflammation in the capsular tissue. The biomembrane-mimicking coatings used on these silicone implants demonstrate great potential for preventing capsular contracture and developing biocompatible materials for various biomedical applications.


Asunto(s)
Materiales Biomiméticos , Implantes de Mama , Materiales Biocompatibles Revestidos , Ensayo de Materiales , Membranas Artificiales , Siliconas , Actinas/biosíntesis , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Femenino , Ratones , Células 3T3 NIH , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Fosforilcolina/metabolismo , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/metabolismo , Ratas , Ratas Sprague-Dawley , Siliconas/química , Siliconas/farmacología , Factor de Crecimiento Transformador beta/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA