Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Cell Mol Life Sci ; 75(13): 2473-2488, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29302702

RESUMEN

Furin is a proprotein convertase implicated in a variety of pathological processes including neurodegenerative diseases. However, the role of furin in neuronal plasticity and learning and memory remains to be elucidated. Here, we report that in brain-specific furin transgenic (Furin-Tg) mice, the dendritic spine density and proliferation of neural progenitor cells were significantly increased. These mice exhibited enhanced long-term potentiation (LTP) and spatial learning and memory performance, without alterations of miniature excitatory/inhibitory postsynaptic currents. In the cortex and hippocampus of Furin-Tg mice, the ratio of mature brain-derived neurotrophic factor (mBDNF) to pro-BDNF, and the activities of extracellular signal-related kinase (ERK) and cAMP response element-binding protein (CREB) were significantly elevated. We also found that hippocampal knockdown of CREB diminished the facilitation of LTP and cognitive function in Furin-Tg mice. Together, our results demonstrate that furin enhances dendritic morphogenesis and learning and memory in transgenic mice, which may be associated with BDNF-ERK-CREB signaling pathway.


Asunto(s)
Dendritas/fisiología , Furina/metabolismo , Aprendizaje por Laberinto/fisiología , Memoria/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dendritas/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Furina/genética , Hipocampo/metabolismo , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis/genética , Precursores de Proteínas/metabolismo , Interferencia de ARN
2.
Electrophoresis ; 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29785801

RESUMEN

In this communication, we assembled ordered polystyrene (PS) microsphere array as a template with the drop-coating method, and the oxygen plasma was used to etch the template to adjust the spacing between the PS microspheres. Nano-triangular gold array and silver nano-pyramid array were obtained by ion beam sputtering to deposit precious metal gold and silver. We observed the surface morphology of Au and Au/Ag composite films by scanning electron microscope and characterized the films by X-ray diffraction and ultraviolet/visible light spectrophotometer. The results show that the etching time of oxygen plasma has an obvious effect in adjusting the spacing between PSs and has a significant effect on the morphology of Au structure.

3.
Molecules ; 19(9): 15213-23, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25251191

RESUMEN

This study involved the determination of the peroxide value (POV) as a measure of the resistance of the oxidation of edible oil with grape vine cane additives to assess their antioxidation potential. The study demonstrated that grape extracts of canes could effectively inhibit the lipid oxidation of edible oils and that this ability varied significantly due to the different extraction solvents employed, as well as to the different varieties of canes used. Lipid oxidation of edible oils was significantly reduced under an accelerated storage condition of 70 ± 1 °C in the presence of Vitamin C (VC), which was chosen as a synergist of grape vine cane extract. A 4:1 ratio of Victoria Blanc-ethyl acetate fraction (EAF) and VC led to a significant lowering of the peroxide value and indicated a better antioxidant effect. Thus, these results indicated that some varieties of grape vine cane extracts could be applied as natural antioxidants for elevation of the quality of edible oils in the food industry.


Asunto(s)
Antioxidantes/farmacología , Extractos Vegetales/farmacología , Aceites de Plantas/química , Vitis/química
4.
J Food Sci ; 89(5): 2814-2826, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38551189

RESUMEN

Conventional methods for inhibiting browning in wine are not suitable for cili (Roxburgh rose) wine, which is naturally rich in ascorbic acid and subject to restrictions on SO2 addition. In this study, the capacity of various additives to suppress the browning of cili wine caused by ascorbic acid degradation was investigated. SO2, pure reduced glutathione (GSH), regular inactive dry yeast (IDY), and IDY with various levels of glutathione enrichment (g-IDY) were separately introduced into cili wine following the completion of alcoholic fermentation. Over a period of 12 months, the color parameters, levels of ascorbic acid, phenolic compounds, antioxidant activity, and GSH content of the aged cili wine were analyzed. Among the investigated additives, g-IDY exhibited the strongest inhibitory effect on browning. Moreover, adding 800 mg L-1 g-IDY increased the total reducing power and residual GSH content by factors of 1.52 and 2.44, respectively, with respect to those of the SO2-treated cili wine, thus enhancing its antioxidant capacity. Using ultra-performance liquid chromatography-tandem mass spectrometry analysis, a total of 22 monomeric phenolic compounds were identified. After g-IDY treatment, the contents of 15 easily oxidizable o-diphenols decreased, preventing the depletion of ascorbic acid as an antioxidant. As a result, the levels of ascorbic acid and total phenolics were 1.5-fold and 1.17-fold higher than those in the SO2-treated wine, respectively. This study demonstrates that g-IDY provides a new approach to preventing the browning of wine caused by ascorbic acid degradation. PRACTICAL APPLICATION: Cili wine, characterized by its high ascorbic acid content, can decelerate cellular senescence and bolster immune function, which has contributed to its popularity. Ascorbic acid, a potent antioxidant, can be spiked into white wines to significantly enhance their antioxidative properties. Nevertheless, the high ascorbic acid content in cili wine renders it susceptible to oxidation under both aerobic and anaerobic conditions, which alters the wine's hue from golden to dark brown, thus diminishing its commercial value. Overcoming this browning associated with ascorbic acid degradation is therefore of considerable importance and could facilitate the advancement of the cili industry.


Asunto(s)
Antioxidantes , Ácido Ascórbico , Color , Fermentación , Glutatión , Fenoles , Dióxido de Azufre , Vino , Vino/análisis , Ácido Ascórbico/análisis , Ácido Ascórbico/farmacología , Antioxidantes/análisis , Antioxidantes/farmacología , Fenoles/análisis , Glutatión/metabolismo , Dióxido de Azufre/análisis , Saccharomyces cerevisiae
5.
Mol Genet Genomic Med ; 12(7): e2499, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39051462

RESUMEN

BACKGROUND: X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder attributed to ABCD1 mutations. Case reports with predominant brainstem involvement are rare. CASE PRESENTATION: In this study, we reported a plateau male worker of X-ALD characterized by progressive weakness accompanied by gait instability, mild nystagmus, and constipation. After 2 years of onset, a brain Magnetic Resonance Image (MRI) scan showed no abnormality but genetic analysis revealed a heterozygous mutation (c.1534G>A) in the ABCD1 gene. After 7 years of onset, although the patient was given aggressive dietary and symptomatic treatment in the course of the disease, a brain MRI scan showed predominantly brainstem damage, but serum concentrations of very long-chain fatty acids were normal, and he had been bedridden for almost 2 years with severe bladder dysfunction, forcing him to undergo cystostomy. The patient was discharged with improved urinary retention and renal function. CONCLUSIONS: We reported an X-ALD patient with a novel ABCD1 variation characterized by brainstem damage and retrospectively summarized the clinical manifestation, MRI features, and genetic features of X-ALD patients with brainstem damage.


Asunto(s)
Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP , Adrenoleucodistrofia , Tronco Encefálico , Mutación Missense , Humanos , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/patología , Adrenoleucodistrofia/diagnóstico , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/genética , Masculino , Tronco Encefálico/patología , Tronco Encefálico/diagnóstico por imagen , Adulto , Imagen por Resonancia Magnética
6.
Plant Physiol Biochem ; 216: 109124, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39276672

RESUMEN

With global climate change, the frequent occurrence of intense rainfall and aggravation of waterlogging disasters have severely threatened the plant growth and fruit quality of grapevines, which are commercially important fruit crops worldwide. There is accordingly an imperative to clarify the responses of grapevine to waterlogging and to propose appropriate remedial measures. Strigolactone (SL) is a phytohormone associated with plant abiotic stress tolerance, while, its function in plant responses to waterlogging stress remain undetermined. In this study, systematic analyses of the morphology, physiology, and transcriptome changes in grapevine leaves and roots under post-waterlogging and GR24 (a synthetic analog of SL) treatments were performed. Morphological and physiological changes in grapevines in response to post-waterlogging stress, including leaf wilting and yellowing, leaf senescence, photosynthesis inhibition, and increased anti-oxidative systems, could be alleviated by the application of GR24. Moreover, transcriptome analysis revealed that the primary gene functions induced by post-waterlogging stress changed over time; however, they were consistently associated with carbohydrate metabolism. The GR24-induced leaf genes were closely associated with carbohydrate metabolism, photosynthesis, antioxidant systems, and hormone signal transduction, which were considered vital aspects that were influenced by GR24 in grapevine to induce post-waterlogging tolerance. Concerning the roots, an enhancement of microtubules and cytoskeleton for cell construction in GR24 application was proposed to facilitate root system recovery after waterlogging. With this study, we comprehend the knowledge regarding the responses of grapevines to post-waterlogging and the ameliorative effect of GR24 with the insight to the transcriptome changes during these processes.

7.
Food Res Int ; 170: 112754, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37316001

RESUMEN

The grape quality might be affected if the solar intensity (SI) was too strong. In this study, the influence of light-exclusive films on the transcriptomic properties and metabolic substances of grapes were evaluated. The results showed that films, especially polycarbonate (PC), could significantly decrease the SI. The sugar content was obviously decreased, while the acid content was increased. The anthocyanin content was decreased, in contrast to the total polyphenols, flavonoids and tannins. The corresponding derivatives owned the same trend. Lots of differentially expressed genes (DEGs) were detected, especially under PC. The expression pattern and GO function enrichment of DEGs from PC significantly differed from other groups. DEGs enrichment also proved that films, especially PC, could significantly improve the contents of tannins, flavonoids and other polyphenols. VvUFGT, VvF3'5'H, VvLDOX, VvLAR1 and VvANR were confirmed to be the key genes in the biosynthetic pathway of polyphenols under different films.


Asunto(s)
Polifenoles , Vitis , Vitis/genética , Transcriptoma , Flavonoides , Taninos
8.
Metabolites ; 12(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36355159

RESUMEN

Salt-induced renal metabolism dysfunction is an important mechanism of salt-sensitive hypertension. Given that the gut-liver axis is the first hit of a high-salt diet (HSD), we aimed to identify the extra-renal mechanism from hepatic metabolism and gut microbiota, and attempted to relieve the salt-induced metabolic dysfunctions by curcumin. Untargeted metabolomics analysis was performed to identify the changes in hepatic metabolic pathways, and integrated analysis was employed to reveal the relationship between hepatic metabolic dysfunction and gut microbial composition. HSD induced significant increase in fumaric acid, l-lactic acid, creatinine, l-alanine, glycine, and l-cysteine levels, and amino acids metabolism pathways associated with glycolysis were significantly altered, including alanine, aspartate, and glutamate metabolism; glycine, serine, and threonine metabolism, which were involved in the regulation of blood pressure. Integrated multi-omics analysis revealed that changes in Paraprevotella, Erysipelotrichaceae, and genera from Clostridiales are associated with metabolic disorders. Gene functional predication analysis based on 16S Ribosomal RNA sequences showed that the dysfunction in hepatic metabolism were correlated with enhanced lipopolysaccharide (LPS) biosynthesis and apoptosis in gut microbes. Curcumin (50 mg/kg/d) might reduce gut microbes-associated LPS biosynthesis and apoptosis, partially reverse metabolic dysfunction, ameliorate renal oxidative stress, and protect against salt-sensitive hypertension.

9.
Plant Physiol Biochem ; 167: 400-409, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34411779

RESUMEN

Drought stress can significantly affect the growth and yield of grapevine. The application of exogenous strigolactone can relieve the drought symptoms of grapevine; however, little is known about the transcription levels in grapevine under drought stress following exogenous strigolactone application. The mitigative effect of exogenous strigolactone on grapevine leaves under drought stress was studied by transcriptome analysis based on RNA sequencing. On the 10th day of drought stress, the strigolactone treatment group had a higher relative water content and lower electrical conductivity, which significantly alleviated the drought damage. Compared to the drought (D) group, a total of 5955 differentially expressed genes (DEGs) (2966 up-regulated genes and 2989 down-regulated genes) were detected in the exogenous strigolactone (DG) groups. Based on Gene Ontology analysis, the DEGs in the D and DG treatments were enriched in the processes of photosynthesis and organic acid catabolism. Pathway analysis showed that the DEGs in the D and DG treatments were enriched in carbon metabolism, ribosome, starch and sucrose metabolism, flavonoid biosynthesis, and circadian rhythm. Additionally, in the DG group, the antioxidant enzyme genes of CAT1, GSHPX1, GSHPX2, POD42, APX6, and SODCP were up-regulated, two NAC, three WRKY, and four MYB transcription factor genes were down-regulated, and the key gene of strigolactone synthesis D14 was up-regulated, compared with that in the D group. The results provide a new perspective for studying the adaptation of plants to drought stress.


Asunto(s)
Sequías , Vitis , Perfilación de la Expresión Génica , Compuestos Heterocíclicos con 3 Anillos , Lactonas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Vitis/genética , Vitis/metabolismo
10.
Food Chem ; 351: 129308, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-33652297

RESUMEN

This study investigated the effects of foliar application of fulvic acid antitranspirant (FA-AT) on Cabernet Sauvignon (CS) and Riesling grapes and wines in a warm viticulture region of China. FA-AT controlled the contents of total soluble solids, fructose and glucose in mature grapes and alcohol in wines. FA-AT improved total phenols and flavonoids in Riesling grapes, and total tannin and individual flavanols in CS grapes and wine, while reducing total individual phenolic acids and flavonols in CS wine. Increased volatiles in CS grapes (hexyl acetate, linalool) and wine (isoamyl alcohol, 1-hexanol, 2-phenylethanol) detected by SPME-GC-MS can contribute to the fruity and floral aroma. FA-AT reduced the accumulation of anthocyanins in CS grapes and wine without an eventual reduction in the tonality of wine by sensory analysis, and improved the taste and balance of Riesling wine. Overall, FA-AT can improve the quality of grapes and wines produced in warm viticulture regions.


Asunto(s)
Agricultura/métodos , Benzopiranos/química , Frutas/química , Azúcares/análisis , Vitis/química , Vino/análisis , Antocianinas/análisis , China , Flavonoides/análisis , Flavonoles/análisis , Cromatografía de Gases y Espectrometría de Masas , Odorantes/análisis , Fenoles/análisis , Taninos/análisis , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA