Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mov Disord ; 38(8): 1428-1442, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37278528

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disease caused by a polyglutamine expansion in the ataxin-1 protein resulting in neuropathology including mutant ataxin-1 protein aggregation, aberrant neurodevelopment, and mitochondrial dysfunction. OBJECTIVES: Identify SCA1-relevant phenotypes in patient-specific fibroblasts and SCA1 induced pluripotent stem cells (iPSCs) neuronal cultures. METHODS: SCA1 iPSCs were generated and differentiated into neuronal cultures. Protein aggregation and neuronal morphology were evaluated using fluorescent microscopy. Mitochondrial respiration was measured using the Seahorse Analyzer. The multi-electrode array (MEA) was used to identify network activity. Finally, gene expression changes were studied using RNA-seq to identify disease-specific mechanisms. RESULTS: Bioenergetics deficits in patient-derived fibroblasts and SCA1 neuronal cultures showed altered oxygen consumption rate, suggesting involvement of mitochondrial dysfunction in SCA1. In SCA1 hiPSC-derived neuronal cells, nuclear and cytoplasmic aggregates were identified similar in localization as aggregates in SCA1 postmortem brain tissue. SCA1 hiPSC-derived neuronal cells showed reduced dendrite length and number of branching points while MEA recordings identified delayed development in network activity in SCA1 hiPSC-derived neuronal cells. Transcriptome analysis identified 1050 differentially expressed genes in SCA1 hiPSC-derived neuronal cells associated with synapse organization and neuron projection guidance, where a subgroup of 151 genes was highly associated with SCA1 phenotypes and linked to SCA1 relevant signaling pathways. CONCLUSIONS: Patient-derived cells recapitulate key pathological features of SCA1 pathogenesis providing a valuable tool for the identification of novel disease-specific processes. This model can be used for high throughput screenings to identify compounds, which may prevent or rescue neurodegeneration in this devastating disease. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ataxias Espinocerebelosas , Ratones , Animales , Ataxinas/metabolismo , Agregado de Proteínas , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Ratones Transgénicos , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ataxias Espinocerebelosas/metabolismo , Fibroblastos/metabolismo
2.
J Biomed Inform ; 64: 232-254, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27789415

RESUMEN

Complex data driven experiments form the basis of biomedical research. Recent findings warn that the context in which the software is run, that is the infrastructure and the third party dependencies, can have a crucial impact on the final results delivered by a computational experiment. This implies that in order to replicate the same result, not only the same data must be used, but also it must be run on an equivalent software stack. In this paper we present the VFramework that enables assessing replicability of workflows. It identifies whether any differences in software dependencies among two executions of the same workflow exist and whether they have impact on the produced results. We also conduct a case study in which we investigate the impact of software dependencies on replicability of Taverna workflows used in biomedical research of Huntington's disease. We re-execute analysed workflows in environments differing in operating system distribution and configuration. The results show that the VFramework can be used to identify the impact of software dependencies on the replicability of biomedical workflows. Furthermore, we observe that despite the fact that the workflows are executed in a controlled environment, they still depend on specific tools installed in the environment. The context model used by the VFramework improves the deficiencies of provenance traces and documents also such tools. Based on our findings we define guidelines for workflow owners that enable them to improve replicability of their workflows.


Asunto(s)
Investigación Biomédica/estadística & datos numéricos , Programas Informáticos , Flujo de Trabajo , Biología Computacional , Humanos
3.
Orphanet J Rare Dis ; 18(1): 335, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37872602

RESUMEN

BACKGROUND: 22q11.2 Deletion Syndrome (22q11DS) is a genetic disorder characterized by the deletion of adjacent genes at a location specified as q11.2 of chromosome 22, resulting in an array of clinical phenotypes including autistic spectrum disorder, schizophrenia, congenital heart defects, and immune deficiency. Many characteristics of the disorder are known, such as the phenotypic variability of the disease and the biological processes associated with it; however, the exact and systemic molecular mechanisms between the deleted area and its resulting clinical phenotypic expression, for example that of neuropsychiatric diseases, are not yet fully understood. RESULTS: Using previously published transcriptomics data (GEO:GSE59216), we constructed two datasets: one set compares 22q11DS patients experiencing neuropsychiatric diseases versus healthy controls, and the other set 22q11DS patients without neuropsychiatric diseases versus healthy controls. We modified and applied the pathway interaction method, originally proposed by Kelder et al. (2011), on a network created using the WikiPathways pathway repository and the STRING protein-protein interaction database. We identified genes and biological processes that were exclusively associated with the development of neuropsychiatric diseases among the 22q11DS patients. Compared with the 22q11DS patients without neuropsychiatric diseases, patients experiencing neuropsychiatric diseases showed significant overrepresentation of regulated genes involving the natural killer cell function and the PI3K/Akt signalling pathway, with affected genes being closely associated with downregulation of CRK like proto-oncogene adaptor protein. Both the pathway interaction and the pathway overrepresentation analysis observed the disruption of the same biological processes, even though the exact lists of genes collected by the two methods were different. CONCLUSIONS: Using the pathway interaction method, we were able to detect a molecular network that could possibly explain the development of neuropsychiatric diseases among the 22q11DS patients. This way, our method was able to complement the pathway overrepresentation analysis, by filling the knowledge gaps on how the affected pathways are linked to the original deletion on chromosome 22. We expect our pathway interaction method could be used for problems with similar contexts, where complex genetic mechanisms need to be identified to explain the resulting phenotypic plasticity.


Asunto(s)
Síndrome de DiGeorge , Cardiopatías Congénitas , Humanos , Síndrome de DiGeorge/genética , Fosfatidilinositol 3-Quinasas , Fenotipo , Perfilación de la Expresión Génica
4.
Orphanet J Rare Dis ; 18(1): 218, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37501188

RESUMEN

BACKGROUND: In biomedicine, machine learning (ML) has proven beneficial for the prognosis and diagnosis of different diseases, including cancer and neurodegenerative disorders. For rare diseases, however, the requirement for large datasets often prevents this approach. Huntington's disease (HD) is a rare neurodegenerative disorder caused by a CAG repeat expansion in the coding region of the huntingtin gene. The world's largest observational study for HD, Enroll-HD, describes over 21,000 participants. As such, Enroll-HD is amenable to ML methods. In this study, we pre-processed and imputed Enroll-HD with ML methods to maximise the inclusion of participants and variables. With this dataset we developed models to improve the prediction of the age at onset (AAO) and compared it to the well-established Langbehn formula. In addition, we used recurrent neural networks (RNNs) to demonstrate the utility of ML methods for longitudinal datasets, assessing driving capabilities by learning from previous participant assessments. RESULTS: Simple pre-processing imputed around 42% of missing values in Enroll-HD. Also, 167 variables were retained as a result of imputing with ML. We found that multiple ML models were able to outperform the Langbehn formula. The best ML model (light gradient boosting machine) improved the prognosis of AAO compared to the Langbehn formula by 9.2%, based on root mean squared error in the test set. In addition, our ML model provides more accurate prognosis for a wider CAG repeat range compared to the Langbehn formula. Driving capability was predicted with an accuracy of 85.2%. The resulting pre-processing workflow and code to train the ML models are available to be used for related HD predictions at: https://github.com/JasperO98/hdml/tree/main . CONCLUSIONS: Our pre-processing workflow made it possible to resolve the missing values and include most participants and variables in Enroll-HD. We show the added value of a ML approach, which improved AAO predictions and allowed for the development of an advisory model that can assist clinicians and participants in estimating future driving capability.


Asunto(s)
Enfermedad de Huntington , Humanos , Enfermedad de Huntington/diagnóstico , Enfermedad de Huntington/genética , Pronóstico , Edad de Inicio , Aprendizaje Automático
5.
Stud Health Technol Inform ; 175: 131-41, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22942004

RESUMEN

The combination of highly complex biology problems and varying IT skills among life scientists poses a unique challenge in designing bioinformatics programs. The set of tools and initiatives described in this work shows new ways of making life science workflows more accessible to the community. Our aim is to help bioinformaticians help biologists. We present how to make Taverna workflows available from within Galaxy, both widely used bioinformatics platforms. Calling Galaxy tools from Taverna is also discussed. In addition, we describe a web application that allows a user to run arbitrary Taverna workflows by only using a web browser.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Investigación sobre Servicios de Salud/métodos , Difusión de la Información/métodos , Almacenamiento y Recuperación de la Información/métodos , Internet , Interfaz Usuario-Computador , Flujo de Trabajo , Semántica
6.
Mol Neurobiol ; 59(4): 2532-2551, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35091961

RESUMEN

While the genetic cause of Huntington disease (HD) is known since 1993, still no cure exists. Therapeutic development would benefit from a method to monitor disease progression and treatment efficacy, ideally using blood biomarkers. Previously, HD-specific signatures were identified in human blood representing signatures in human brain, showing biomarker potential. Since drug candidates are generally first screened in rodent models, we aimed to identify HD signatures in blood and brain of YAC128 HD mice and compare these with previously identified human signatures. RNA sequencing was performed on blood withdrawn at two time points and four brain regions from YAC128 and control mice. Weighted gene co-expression network analysis was used to identify clusters of co-expressed genes (modules) associated with the HD genotype. These HD-associated modules were annotated via text-mining to determine the biological processes they represented. Subsequently, the processes from mouse blood were compared with mouse brain, showing substantial overlap, including protein modification, cell cycle, RNA splicing, nuclear transport, and vesicle-mediated transport. Moreover, the disease-associated processes shared between mouse blood and brain were highly comparable to those previously identified in human blood and brain. In addition, we identified HD blood-specific pathology, confirming previous findings for peripheral pathology in blood. Finally, we identified hub genes for HD-associated blood modules and proposed a strategy for gene selection for development of a disease progression monitoring panel.


Asunto(s)
Fenómenos Biológicos , Enfermedad de Huntington , Animales , Encéfalo/metabolismo , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/patología , Ratones , Ratones Transgénicos , Transcriptoma/genética
7.
Orphanet J Rare Dis ; 11(1): 97, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27476530

RESUMEN

BACKGROUND: Huntington's disease (HD) is a devastating brain disorder with no effective treatment or cure available. The scarcity of brain tissue makes it hard to study changes in the brain and impossible to perform longitudinal studies. However, peripheral pathology in HD suggests that it is possible to study the disease using peripheral tissue as a monitoring tool for disease progression and/or efficacy of novel therapies. In this study, we investigated if blood can be used to monitor disease severity and progression in brain. Since previous attempts using only gene expression proved unsuccessful, we compared blood and brain Huntington's disease signatures in a functional context. METHODS: Microarray HD gene expression profiles from three brain regions were compared to the transcriptome of HD blood generated by next generation sequencing. The comparison was performed with a combination of weighted gene co-expression network analysis and literature based functional analysis (Concept Profile Analysis). Uniquely, our comparison of blood and brain datasets was not based on (the very limited) gene overlap but on the similarity between the gene annotations in four different semantic categories: "biological process", "cellular component", "molecular function" and "disease or syndrome". RESULTS: We identified signatures in HD blood reflecting a broad pathophysiological spectrum, including alterations in the immune response, sphingolipid biosynthetic processes, lipid transport, cell signaling, protein modification, spliceosome, RNA splicing, vesicle transport, cell signaling and synaptic transmission. Part of this spectrum was reminiscent of the brain pathology. The HD signatures in caudate nucleus and BA4 exhibited the highest similarity with blood, irrespective of the category of semantic annotations used. BA9 exhibited an intermediate similarity, while cerebellum had the least similarity. We present two signatures that were shared between blood and brain: immune response and spinocerebellar ataxias. CONCLUSIONS: Our results demonstrate that HD blood exhibits dysregulation that is similar to brain at a functional level, but not necessarily at the level of individual genes. We report two common signatures that can be used to monitor the pathology in brain of HD patients in a non-invasive manner. Our results are an exemplar of how signals in blood data can be used to represent brain disorders. Our methodology can be used to study disease specific signatures in diseases where heterogeneous tissues are involved in the pathology.


Asunto(s)
Encéfalo/metabolismo , Enfermedad de Huntington/sangre , Enfermedad de Huntington/metabolismo , Biomarcadores/sangre , Biomarcadores/metabolismo , Encéfalo/patología , Progresión de la Enfermedad , Expresión Génica/genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedad de Huntington/genética
8.
Metabolomics ; 12: 137, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27524956

RESUMEN

INTRODUCTION: Metabolic changes have been frequently associated with Huntington's disease (HD). At the same time peripheral blood represents a minimally invasive sampling avenue with little distress to Huntington's disease patients especially when brain or other tissue samples are difficult to collect. OBJECTIVES: We investigated the levels of 163 metabolites in HD patient and control serum samples in order to identify disease related changes. Additionally, we integrated the metabolomics data with our previously published next generation sequencing-based gene expression data from the same patients in order to interconnect the metabolomics changes with transcriptional alterations. METHODS: This analysis was performed using targeted metabolomics and flow injection electrospray ionization tandem mass spectrometry in 133 serum samples from 97 Huntington's disease patients (29 pre-symptomatic and 68 symptomatic) and 36 controls. RESULTS: By comparing HD mutation carriers with controls we identified 3 metabolites significantly changed in HD (serine and threonine and one phosphatidylcholine-PC ae C36:0) and an additional 8 phosphatidylcholines (PC aa C38:6, PC aa C36:0, PC ae C38:0, PC aa C38:0, PC ae C38:6, PC ae C42:0, PC aa C36:5 and PC ae C36:0) that exhibited a significant association with disease severity. Using workflow based exploitation of pathway databases and by integrating our metabolomics data with our gene expression data from the same patients we identified 4 deregulated phosphatidylcholine metabolism related genes (ALDH1B1, MBOAT1, MTRR and PLB1) that showed significant association with the changes in metabolite concentrations. CONCLUSION: Our results support the notion that phosphatidylcholine metabolism is deregulated in HD blood and that these metabolite alterations are associated with specific gene expression changes.

9.
PLoS One ; 11(2): e0149621, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26919047

RESUMEN

High-throughput experimental methods such as medical sequencing and genome-wide association studies (GWAS) identify increasingly large numbers of potential relations between genetic variants and diseases. Both biological complexity (millions of potential gene-disease associations) and the accelerating rate of data production necessitate computational approaches to prioritize and rationalize potential gene-disease relations. Here, we use concept profile technology to expose from the biomedical literature both explicitly stated gene-disease relations (the explicitome) and a much larger set of implied gene-disease associations (the implicitome). Implicit relations are largely unknown to, or are even unintended by the original authors, but they vastly extend the reach of existing biomedical knowledge for identification and interpretation of gene-disease associations. The implicitome can be used in conjunction with experimental data resources to rationalize both known and novel associations. We demonstrate the usefulness of the implicitome by rationalizing known and novel gene-disease associations, including those from GWAS. To facilitate the re-use of implicit gene-disease associations, we publish our data in compliance with FAIR Data Publishing recommendations [https://www.force11.org/group/fairgroup] using nanopublications. An online tool (http://knowledge.bio) is available to explore established and potential gene-disease associations in the context of other biomedical relations.


Asunto(s)
Biología Computacional/métodos , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos
10.
J Biomed Semantics ; 6: 5, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26464783

RESUMEN

Data from high throughput experiments often produce far more results than can ever appear in the main text or tables of a single research article. In these cases, the majority of new associations are often archived either as supplemental information in an arbitrary format or in publisher-independent databases that can be difficult to find. These data are not only lost from scientific discourse, but are also elusive to automated search, retrieval and processing. Here, we use the nanopublication model to make scientific assertions that were concluded from a workflow analysis of Huntington's Disease data machine-readable, interoperable, and citable. We followed the nanopublication guidelines to semantically model our assertions as well as their provenance metadata and authorship. We demonstrate interoperability by linking nanopublication provenance to the Research Object model. These results indicate that nanopublications can provide an incentive for researchers to expose data that is interoperable and machine-readable for future use and preservation for which they can get credits for their effort. Nanopublications can have a leading role into hypotheses generation offering opportunities to produce large-scale data integration.

11.
J Biomed Semantics ; 5(1): 41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25276335

RESUMEN

BACKGROUND: One of the main challenges for biomedical research lies in the computer-assisted integrative study of large and increasingly complex combinations of data in order to understand molecular mechanisms. The preservation of the materials and methods of such computational experiments with clear annotations is essential for understanding an experiment, and this is increasingly recognized in the bioinformatics community. Our assumption is that offering means of digital, structured aggregation and annotation of the objects of an experiment will provide necessary meta-data for a scientist to understand and recreate the results of an experiment. To support this we explored a model for the semantic description of a workflow-centric Research Object (RO), where an RO is defined as a resource that aggregates other resources, e.g., datasets, software, spreadsheets, text, etc. We applied this model to a case study where we analysed human metabolite variation by workflows. RESULTS: We present the application of the workflow-centric RO model for our bioinformatics case study. Three workflows were produced following recently defined Best Practices for workflow design. By modelling the experiment as an RO, we were able to automatically query the experiment and answer questions such as "which particular data was input to a particular workflow to test a particular hypothesis?", and "which particular conclusions were drawn from a particular workflow?". CONCLUSIONS: Applying a workflow-centric RO model to aggregate and annotate the resources used in a bioinformatics experiment, allowed us to retrieve the conclusions of the experiment in the context of the driving hypothesis, the executed workflows and their input data. The RO model is an extendable reference model that can be used by other systems as well. AVAILABILITY: The Research Object is available at http://www.myexperiment.org/packs/428 The Wf4Ever Research Object Model is available at http://wf4ever.github.io/ro.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA