Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892372

RESUMEN

Organochlorine pesticides (OCPs) are a class of environmentally persistent and bioaccumulative pollutants. Among these, ß-hexachlorocyclohexane (ß-HCH) is a byproduct of lindane synthesis, one of the most worldwide widespread pesticides. ß-HCH cellular mechanisms inducing chemical carcinogenesis correspond to many of those inducing chemoresistance, in particular, by the activation of signal transducer and activator of transcription 3 (STAT3) signaling pathways. For this purpose, four cell lines, representative of breast, lung, prostate, and hepatocellular cancers, were treated with ß-HCH, specific tyrosine kinase inhibitors (TKIs), and a STAT3 inhibitor. All cell samples were analyzed by a viability assay, immunoblotting analysis, a wound-healing assay, and a colony formation assay. The results show that ß-HCH reduces the efficacy of TKIs. The STAT3 protein, in this context, plays a central role. In fact, by inhibiting its activity, the efficacy of the anticancer drug is restored. Furthermore, this manuscript aimed to draw the attention of the scientific and socio-healthcare community to the issue of prolonged exposure to contaminants and their impact on drug efficacy.


Asunto(s)
Antineoplásicos , Hexaclorociclohexano , Inhibidores de Proteínas Quinasas , Factor de Transcripción STAT3 , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Hexaclorociclohexano/farmacología , Antineoplásicos/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
2.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36982868

RESUMEN

It is well-established that the beneficial properties of single phytonutrients can be better attained when they are taken with the complex of the molecules present in their natural milieu. Tomato, the fruit providing the most comprehensive complex of prostate-health-preserving micronutrients, has been shown to be superior to its single-nutrient counterparts in decreasing the incidence of age-related prostate diseases. Herein, we describe a novel tomato food supplement enriched with olive polyphenols, containing cis-lycopene concentrations far exceeding those present in industry-produced tomato commodities. The supplement, endowed with antioxidant activity comparable to that of N-acetylcysteine, significantly reduced, in experimental animals, the blood levels of prostate-cancer-promoting cytokines. In prospective, randomized, double-blinded, placebo-controlled studies performed on patients affected by benign prostatic hyperplasia, its uptake significantly improved urinary symptoms and quality of life. Therefore, this supplement can complement and, in some cases, be an alternative to current benign prostatic hyperplasia management. Furthermore, the product suppressed carcinogenesis in the TRAMP mouse model of human prostate cancer and interfered with prostate cancer molecular signaling. Thus, it may offer a step forward in exploring the potential of tomato consumption to delay or prevent the onset of age-related prostate diseases in high-risk individuals.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Solanum lycopersicum , Masculino , Ratones , Animales , Humanos , Hiperplasia Prostática/prevención & control , Próstata , Carotenoides , Estudios Prospectivos , Calidad de Vida , Dieta , Neoplasias de la Próstata/prevención & control , Neoplasias de la Próstata/epidemiología , Hipertrofia
3.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37686085

RESUMEN

The protein disulfide isomerase A3 (PDIA3) is directly or indirectly involved in various physiopathological processes and participates in cancer initiation, progression and chemosensitivity. However, little is known about its involvement in glioblastoma. To obtain specific information, we performed cellular experiments in the T98G and U-87 MG glioblastoma cell lines to evaluate the role of PDIA3. The loss of PDIA3 functions, either through inhibition or silencing, reduced glioblastoma cells spreading by triggering cytotoxic phenomena. PDIA3 inhibition led to a redistribution of PDIA3, resulting in the formation of protein aggregates visualized through immunofluorescence staining. Concurrently, cell cycle progression underwent arrest at the G1/S checkpoint. After PDIA3 inhibition, ROS-independent DNA damage and the activation of the repair system occurred, as evidenced by the phosphorylation of H2A.X and the overexpression of the Ku70 protein. We also demonstrated through a clonogenic assay that PDIA3 inhibition could increase the chemosensitivity of T98G and U-87 MG cells to the approved glioblastoma drug temozolomide (TMZ). Overall, PDIA3 inhibition induced cytotoxic effects in the analyzed glioblastoma cell lines. Although further in vivo studies are needed, the results suggested PDIA3 as a novel therapeutic target that could also be included in already approved therapies.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Proteína Disulfuro Isomerasas/genética , Temozolomida/farmacología , Fosforilación , Bioensayo
4.
Cell Mol Biol Lett ; 27(1): 12, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35109791

RESUMEN

The ERp57/PDIA3 protein is a pleiotropic member of the PDIs family and, although predominantly located in the endoplasmic reticulum (ER), has indeed been found in other cellular compartments, such as the nucleus or the cell membrane. ERp57/PDIA3 is an important research target considering it can be found in various subcellular locations. This protein is involved in many different physiological and pathological processes, and our review describes new data on its functions and summarizes some ligands identified as PDIA3-specific inhibitors.


Asunto(s)
Retículo Endoplásmico , Proteína Disulfuro Isomerasas , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteína Disulfuro Isomerasas/metabolismo
5.
Int J Mol Sci ; 22(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072471

RESUMEN

Organochlorine pesticides constitute the majority of the total environmental pollutants, and a wide range of compounds have been found to be carcinogenic to humans. Among all, growing interest has been focused on ß-hexachlorocyclohexane (ß-HCH), virtually the most hazardous and, at the same time, the most poorly investigated member of the hexachlorocyclohexane family. Considering the multifaceted biochemical activities of ß-HCH, already established in our previous studies, the aim of this work is to assess whether ß-HCH could also trigger cellular malignant transformation toward cancer development. For this purpose, experiments were performed on the human normal bronchial epithelium cell line BEAS-2B exposed to 10 µM ß-HCH. The obtained results strongly support the carcinogenic potential of ß-HCH, which is achieved through both non-genotoxic (activation of oncogenic signaling pathways and proliferative activity) and indirect genotoxic (ROS production and DNA damage) mechanisms that significantly affect cellular macroscopic characteristics and functions such as cell morphology, cell cycle profile, and apoptosis. Taking all these elements into account, the presented study provides important elements to further characterize ß-HCH, which appears to be a full-fledged carcinogenic agent.


Asunto(s)
Carcinógenos/farmacología , Transformación Celular Neoplásica/inducido químicamente , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Hexaclorociclohexano/farmacología , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/patología , Apoptosis/efectos de los fármacos , Biomarcadores , Biomarcadores de Tumor , Ciclo Celular/efectos de los fármacos , Línea Celular , Proliferación Celular , Células Cultivadas , Células Epiteliales/metabolismo , Expresión Génica , Hexaclorociclohexano/efectos adversos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Mucosa Respiratoria/metabolismo , Transducción de Señal/efectos de los fármacos
6.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885717

RESUMEN

The ß-isomer of hexachlorocyclohexane (ß-HCH) is a globally widespread pollutant that embodies all the physicochemical characteristics of organochlorine pesticides, constituting an environmental risk factor for a wide range of noncommunicable diseases. Previous in vitro studies from our group disclosed the carcinogenic potential of ß-HCH, which contributes to neoplastic transformation by means of multifaceted intracellular mechanisms. Considering the positive evidence regarding the protective role of natural bioactive compounds against pollution-induced toxicity, micronutrients from olive and tomato endowed with the capability of modulating ß-HCH cellular targets were tested. For this purpose, the solution obtained from a patented food supplement (No. EP2851080A1), referred to as Tomato and Olive Bioactive Compounds (TOBC), was administered to the androgen-sensitive prostate cancer cells LNCaP and different biochemical and cellular assays were performed to evaluate its efficiency. TOBC shows a dose-dependent significant chemoprotection by contrasting ß-HCH-induced intracellular responses such as STAT3 and AhR activation, disruption of AR signaling, antiapoptotic and proliferative activity, and increase in ROS production and DNA damage. These experimental outcomes identified TOBC as a suitable functional food to be included in a diet regimen aimed at defending cells from ß-HCH negative effects, recommending the development of tailored enriched formulations for exposed individuals.


Asunto(s)
Fitoquímicos/farmacología , Neoplasias de la Próstata/dietoterapia , Receptores Androgénicos/genética , Factor de Transcripción STAT3/genética , Andrógenos/metabolismo , Proliferación Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hexaclorociclohexano/toxicidad , Humanos , Solanum lycopersicum/química , Masculino , Micronutrientes/química , Micronutrientes/farmacología , Olea/química , Fitoquímicos/química , Neoplasias de la Próstata/inducido químicamente , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/química , Factores de Riesgo , Transducción de Señal/efectos de los fármacos
7.
Pharmaceutics ; 14(6)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35745837

RESUMEN

A combination of anticancer drugs and chemosensitizing agents has been approached as a promising strategy to potentiate chemotherapy and reduce toxicity in aggressive and chemoresistant cancers, like hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), and pancreatic ductal adenocarcinoma (PDAC). In the present study, the ability of caryophyllane sesquiterpenes to potentiate sorafenib efficacy was studied in HCC, CCA, and PDAC cell models, focusing on the modulation of STAT3 signaling and ABC transporters; tolerability studies in normal cells were also performed. Results showed that the combination of sorafenib and caryophyllane sesquiterpenes synergized the anticancer drug, especially in pancreatic Bx-PC3 adenocarcinoma cells; a similar trend, although with lower efficacy, was found for the standard ABC transporter inhibitors. Synergistic effects were associated with a modulation of MDR1 (or Pgp) and MRP transporters, both at gene and protein level; moreover, activation of STAT3 cascade and cell migration appeared significantly affected, suggesting that the STAT3/ABC-transporters axis finely regulated efficacy and chemoresistance to sorafenib, thus appearing as a suitable target to overcome drawbacks of sorafenib-based chemotherapy in hepato-biliary-pancreatic cancers. Present findings strengthen the interest in caryophyllane sesquiterpenes as chemosensitizing and chemopreventive agents and contribute to clarifying drug resistance mechanisms in HCC, CCA, and PDAC cancers and to developing possible novel therapeutic strategies.

8.
Biomedicines ; 10(9)2022 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-36140359

RESUMEN

Exposure to cigarette smoke (CS) has been associated with an increased risk of fatal breast cancers and recurrence, along with chemoresistance and chemotherapy impairment. This strengthens the interest in chemopreventive agents to be exploited both in healthy and oncological subjects to prevent or repair CS damage. In the present study, we evaluated the chemopreventive properties of the natural sesquiterpene ß-caryophyllene towards the damage induced by cigarette smoke condensate (CSC) in triple negative breast cancer MDA-MB-468 cells. Particularly, we assessed the ability of the sesquiterpene to interfere with the mechanisms exploited by CSC to promote cell survival and chemoresistance, including genomic instability, cell cycle progress, autophagy/apoptosis, cell migration and related pathways. ß-Caryophyllene was found to be able to increase the CSC-induced death of MDA-MB-468 cells, likely triggering oxidative stress, cell cycle arrest and apoptosis; moreover, it hindered cell recovery, autophagy activation and cell migration; at last, a marked inhibition of the signal transducer and activator of transcription 3 (STAT3) activation was highlighted: this could represent a key mechanism of the chemoprevention by ß-caryophyllene. Although further studies are required to confirm the in vivo efficacy of ß-caryophyllene, the present results suggest a novel strategy to reduce the harmful effect of smoke in cancer patients and to improve the survival expectations in breast cancer women.

9.
Biomedicines ; 9(11)2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34829762

RESUMEN

In a previous work, it was shown that punicalagin, an active ingredient of pomegranate, is able to bind to PDIA3 and inhibit its disulfide reductase activity. Here we provide evidence that punicalagin can also bind to PDIA1, the main expressed form of protein disulfide isomerase (PDI). In this comparative study, the affinity and the effect of punicalagin binding on each protein were evaluated, and a computational approach was used to identify putative binding sites. Punicalagin binds to either PDIA1 or PDIA3 with a similar affinity, but the inhibition efficacy on protein reductase activity is higher for PDIA3. Additionally, punicalagin differently affects the thermal denaturation profile of both proteins. Molecular docking and molecular dynamics simulations led to propose a punicalagin binding mode on PDIA1 and PDIA3, identifying the binding sites at the redox domains a' in two different pockets, suggesting different effects of punicalagin on proteins' structure. This study provides insights to develop punicalagin-based ligands, to set up a rational design for PDIA3 selective inhibitors, and to dissect the molecular determinant to modulate the protein activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA