Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.186
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 82(19): 3661-3676.e8, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36206740

RESUMEN

Mitochondrial Ca2+ uptake, mediated by the mitochondrial Ca2+ uniporter, regulates oxidative phosphorylation, apoptosis, and intracellular Ca2+ signaling. Previous studies suggest that non-neuronal uniporters are exclusively regulated by a MICU1-MICU2 heterodimer. Here, we show that skeletal-muscle and kidney uniporters also complex with a MICU1-MICU1 homodimer and that human/mouse cardiac uniporters are largely devoid of MICUs. Cells employ protein-importation machineries to fine-tune the relative abundance of MICU1 homo- and heterodimers and utilize a conserved MICU intersubunit disulfide to protect properly assembled dimers from proteolysis by YME1L1. Using the MICU1 homodimer or removing MICU1 allows mitochondria to more readily take up Ca2+ so that cells can produce more ATP in response to intracellular Ca2+ transients. However, the trade-off is elevated ROS, impaired basal metabolism, and higher susceptibility to death. These results provide mechanistic insights into how tissues can manipulate mitochondrial Ca2+ uptake properties to support their unique physiological functions.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Adenosina Trifosfato , Animales , Calcio/metabolismo , Canales de Calcio , Proteínas de Unión al Calcio/genética , Disulfuros/metabolismo , Humanos , Ratones , Proteínas de Transporte de Membrana Mitocondrial/genética , Especies Reactivas de Oxígeno/metabolismo
2.
Cell ; 158(5): 977-979, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25171401

RESUMEN

The biophysical basis of temperature-sensitive ion channel gating has been a tough nut to crack. Chowdhury, et al. use a protein engineering approach to render a temperature-insensitive voltage-gated channel cold- or heat-responsive to reveal principles for temperature-gating and a plausible model for molecularly enabling this mode of environmental responsiveness.


Asunto(s)
Canales Iónicos/química , Canales Iónicos/metabolismo , Ingeniería de Proteínas , Animales , Humanos
3.
Nature ; 582(7810): 129-133, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494073

RESUMEN

Mitochondria take up Ca2+ through the mitochondrial calcium uniporter complex to regulate energy production, cytosolic Ca2+ signalling and cell death1,2. In mammals, the uniporter complex (uniplex) contains four core components: the pore-forming MCU protein, the gatekeepers MICU1 and MICU2, and an auxiliary subunit, EMRE, essential for Ca2+ transport3-8. To prevent detrimental Ca2+ overload, the activity of MCU must be tightly regulated by MICUs, which sense changes in cytosolic Ca2+ concentrations to switch MCU on and off9,10. Here we report cryo-electron microscopic structures of the human mitochondrial calcium uniporter holocomplex in inhibited and Ca2+-activated states. These structures define the architecture of this multicomponent Ca2+-uptake machinery and reveal the gating mechanism by which MICUs control uniporter activity. Our work provides a framework for understanding regulated Ca2+ uptake in mitochondria, and could suggest ways of modulating uniporter activity to treat diseases related to mitochondrial Ca2+ overload.


Asunto(s)
Canales de Calcio/química , Canales de Calcio/metabolismo , Microscopía por Crioelectrón , Sitios de Unión/efectos de los fármacos , Calcio/metabolismo , Calcio/farmacología , Canales de Calcio/ultraestructura , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura
4.
Nucleic Acids Res ; 52(12): 6811-6829, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38676947

RESUMEN

Protein arginine methyltransferase CARM1 has been shown to methylate a large number of non-histone proteins, and play important roles in gene transcriptional activation, cell cycle progress, and tumorigenesis. However, the critical substrates through which CARM1 exerts its functions remain to be fully characterized. Here, we reported that CARM1 directly interacts with the GATAD2A/2B subunit in the nucleosome remodeling and deacetylase (NuRD) complex, expanding the activities of NuRD to include protein arginine methylation. CARM1 and NuRD bind and activate a large cohort of genes with implications in cell cycle control to facilitate the G1 to S phase transition. This gene activation process requires CARM1 to hypermethylate GATAD2A/2B at a cluster of arginines, which is critical for the recruitment of the NuRD complex. The clinical significance of this gene activation mechanism is underscored by the high expression of CARM1 and NuRD in breast cancers, and the fact that knockdown CARM1 and NuRD inhibits cancer cell growth in vitro and tumorigenesis in vivo. Targeting CARM1-mediated GATAD2A/2B methylation with CARM1 specific inhibitors potently inhibit breast cancer cell growth in vitro and tumorigenesis in vivo. These findings reveal a gene activation program that requires arginine methylation established by CARM1 on a key chromatin remodeler, and targeting such methylation might represent a promising therapeutic avenue in the clinic.


Asunto(s)
Neoplasias de la Mama , Ensamble y Desensamble de Cromatina , Regulación Neoplásica de la Expresión Génica , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2 , Proteína-Arginina N-Metiltransferasas , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Humanos , Femenino , Animales , Línea Celular Tumoral , Ciclo Celular/genética , Ratones , Metilación , Arginina/metabolismo , Carcinogénesis/genética , Activación Transcripcional
5.
Proc Natl Acad Sci U S A ; 120(16): e2217665120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37036971

RESUMEN

The mitochondrial calcium uniporter is a Ca2+ channel that imports cytoplasmic Ca2+ into the mitochondrial matrix to regulate cell bioenergetics, intracellular Ca2+ signaling, and apoptosis. The uniporter contains the pore-forming MCU subunit, an auxiliary EMRE protein, and the regulatory MICU1/MICU2 subunits. Structural and biochemical studies have suggested that MICU1 gates MCU by blocking/unblocking the pore. However, mitoplast patch-clamp experiments argue that MICU1 does not block, but instead potentiates MCU via allosteric mechanisms. Here, we address this direct clash of the proposed MICU1 function. Supporting the MICU1-occlusion mechanism, patch-clamp demonstrates that purified MICU1 strongly suppresses MCU Ca2+ currents, and this inhibition is abolished by mutating the MCU-interacting K126 residue. Moreover, a membrane-depolarization assay shows that MICU1 prevents MCU-mediated Na+ flux into intact mitochondria under Ca2+-free conditions. Examining the observations underlying the potentiation model, we found that MICU1 occlusion was not detected in mitoplasts not because MICU1 cannot block, but because MICU1 dissociates from the uniporter complex. Furthermore, MICU1 depletion reduces uniporter transport not because MICU1 can potentiate MCU, but because EMRE is down-regulated. These results firmly establish the molecular mechanisms underlying the physiologically crucial process of uniporter regulation by MICU1.


Asunto(s)
Calcio , Proteínas de Transporte de Membrana Mitocondrial , Calcio/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Canales de Calcio/metabolismo , Membranas Mitocondriales/metabolismo , Calcio de la Dieta , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(4): e2208176120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36652477

RESUMEN

Mutations in IDH1, IDH2, and TET2 are recurrently observed in myeloid neoplasms. IDH1 and IDH2 encode isocitrate dehydrogenase isoforms, which normally catalyze the conversion of isocitrate to α-ketoglutarate (α-KG). Oncogenic IDH1/2 mutations confer neomorphic activity, leading to the production of D-2-hydroxyglutarate (D-2-HG), a potent inhibitor of α-KG-dependent enzymes which include the TET methylcytosine dioxygenases. Given their mutual exclusivity in myeloid neoplasms, IDH1, IDH2, and TET2 mutations may converge on a common oncogenic mechanism. Contrary to this expectation, we observed that they have distinct, and even opposite, effects on hematopoietic stem and progenitor cells in genetically engineered mice. Epigenetic and single-cell transcriptomic analyses revealed that Idh2R172K and Tet2 loss-of-function have divergent consequences on the expression and activity of key hematopoietic and leukemogenic regulators. Notably, chromatin accessibility and transcriptional deregulation in Idh2R172K cells were partially disconnected from DNA methylation alterations. These results highlight unanticipated divergent effects of IDH1/2 and TET2 mutations, providing support for the optimization of genotype-specific therapies.


Asunto(s)
Proteínas de Unión al ADN , Dioxigenasas , Isocitrato Deshidrogenasa , Células Madre , Animales , Ratones , Dioxigenasas/genética , Proteínas de Unión al ADN/genética , Isocitrato Deshidrogenasa/genética , Isocitrato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutación , Neoplasias , Células Madre/metabolismo
7.
Hum Mol Genet ; 32(3): 462-472, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36001342

RESUMEN

YWHAZ encodes an adapter protein 14-3-3ζ, which is involved in many signaling pathways that control cellular proliferation, migration and differentiation. It has not been definitely correlated to any phenotype in OMIM. To investigate the role of YWHAZ gene in intellectual disability and global developmental delay, we conducted whole-exon sequencing in all of the available members from a large three-generation family and we discovered that a novel variant of the YWHAZ gene was associated with intellectual disability and global developmental delay. This variant is a missense mutation of YWHAZ, p.Lys49Asn/c.147A > T, which was found in all affected members but not found in other unaffected members. We also conducted computational modeling and knockdown/knockin with Drosophila to confirm the role of the YWHAZ variant in intellectual disability. Computational modeling showed that the binding energy was increased in the mutated protein combining with the ligand indicating that the c147A > T variation was a loss-of-function variant. Cognitive defects and mushroom body morphological abnormalities were observed in YWHAZ c.147A > T knockin flies. The YWHAZ knockdown flies also manifested serious cognitive defects with hyperactivity behaviors, which is consistent with the clinical features. Our clinical and experimental results consistently suggested that YWHAZ was a novel intellectual disability pathogenic gene.


Asunto(s)
Discapacidad Intelectual , Malformaciones del Sistema Nervioso , Niño , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Proteínas 14-3-3/genética , Mutación Missense , Encéfalo , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/complicaciones
8.
Brief Bioinform ; 24(1)2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36458451

RESUMEN

In epistasis analysis, single-nucleotide polymorphism-single-nucleotide polymorphism interactions (SSIs) among genes may, alongside other environmental factors, influence the risk of multifactorial diseases. To identify SSI between cases and controls (i.e. binary traits), the score for model quality is affected by different objective functions (i.e. measurements) because of potential disease model preferences and disease complexities. Our previous study proposed a multiobjective approach-based multifactor dimensionality reduction (MOMDR), with the results indicating that two objective functions could enhance SSI identification with weak marginal effects. However, SSI identification using MOMDR remains a challenge because the optimal measure combination of objective functions has yet to be investigated. This study extended MOMDR to the many-objective version (i.e. many-objective MDR, MaODR) by integrating various disease probability measures based on a two-way contingency table to improve the identification of SSI between cases and controls. We introduced an objective function selection approach to determine the optimal measure combination in MaODR among 10 well-known measures. In total, 6 disease models with and 40 disease models without marginal effects were used to evaluate the general algorithms, namely those based on multifactor dimensionality reduction, MOMDR and MaODR. Our results revealed that the MaODR-based three objective function model, correct classification rate, likelihood ratio and normalized mutual information (MaODR-CLN) exhibited the higher 6.47% detection success rates (Accuracy) than MOMDR and higher 17.23% detection success rates than MDR through the application of an objective function selection approach. In a Wellcome Trust Case Control Consortium, MaODR-CLN successfully identified the significant SSIs (P < 0.001) associated with coronary artery disease. We performed a systematic analysis to identify the optimal measure combination in MaODR among 10 objective functions. Our combination detected SSIs-based binary traits with weak marginal effects and thus reduced spurious variables in the score model. MOAI is freely available at https://sites.google.com/view/maodr/home.


Asunto(s)
Epistasis Genética , Modelos Genéticos , Algoritmos , Fenotipo , Reducción de Dimensionalidad Multifactorial/métodos , Polimorfismo de Nucleótido Simple
9.
Plant Physiol ; 195(1): 785-798, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38159040

RESUMEN

Rice (Oryza sativa) bacterial blight, caused by Xanthomonas oryzae pv. Oryzae (Xoo), threatens plant growth and yield. However, the molecular mechanisms underlying rice immunity against Xoo remain elusive. Here, we identified a NAC (NAM-ATAF-CUC) transcription factor OsNAC2 as a negative regulator in the resistance to bacterial blight disease in rice. Constitutive overexpression of OsNAC2 inhibited the expression of salicylic acid (SA) biosynthesis-related genes (i.e. isochorismate synthase 1 (OsICS1), phenylalanine ammonia lyase 3 (OsPAL3), etc.) with adverse impacts on the pathogenesis-related proteins (PRs) responses and compromised blight resistance. Moreover, OsNAC2 interacted with APETALA2/ethylene-responsive element binding protein (AP2/EREBP) transcription factor OsEREBP1 and possibly threatened its protein stability, destroying the favorable interaction of OsEREBP1-Xa21-binding protein OsXb22a in the cytoplasm during Xoo-induced infection. On the contrary, downregulation of OsNAC2 resulted in enhanced resistance to bacterial blight in rice without any growth or yield penalties. Our results demonstrated that OsNAC2 inhibits SA signaling and stably interacted with OsEREBP1 to impair disease resistance. This OsNAC2-OsEREBP1-based homeostatic mechanism provided insights into the competition between rice and bacterial pathogens, and it will be useful to improve the disease resistance of important crops through breeding.


Asunto(s)
Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Homeostasis , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Factores de Transcripción , Xanthomonas , Oryza/genética , Oryza/microbiología , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xanthomonas/fisiología , Xanthomonas/patogenicidad , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética , Ácido Salicílico/metabolismo
10.
J Med Genet ; 61(7): 652-660, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38508705

RESUMEN

BACKGROUND: The ZFHX3 gene plays vital roles in embryonic development, cell proliferation, neuronal differentiation and neuronal death. This study aims to explore the relationship between ZFHX3 variants and epilepsy. METHODS: Whole-exome sequencing was performed in a cohort of 378 patients with partial (focal) epilepsy. A Drosophila Zfh2 knockdown model was used to validate the association between ZFHX3 and epilepsy. RESULTS: Compound heterozygous ZFHX3 variants were identified in eight unrelated cases. The burden of ZFHX3 variants was significantly higher in the case cohort, shown by multiple/specific statistical analyses. In Zfh2 knockdown flies, the incidence and duration of seizure-like behaviour were significantly greater than those in the controls. The Zfh2 knockdown flies exhibited more firing in excitatory neurons. All patients presented partial seizures. The five patients with variants in the C-terminus/N-terminus presented mild partial epilepsy. The other three patients included one who experienced frequent non-convulsive status epilepticus and two who had early spasms. These three patients had also neurodevelopmental abnormalities and were diagnosed as developmental epileptic encephalopathy (DEE), but achieved seizure-free after antiepileptic-drug treatment without adrenocorticotropic-hormone/steroids. The analyses of temporal expression (genetic dependent stages) indicated that ZFHX3 orthologous were highly expressed in the embryonic stage and decreased dramatically after birth. CONCLUSION: ZFHX3 is a novel causative gene of childhood partial epilepsy and DEE. The patients of infantile spasms achieved seizure-free after treatment without adrenocorticotropic-hormone/steroids implies a significance of genetic diagnosis in precise treatment. The genetic dependent stage provided an insight into the underlying mechanism of the evolutional course of illness.


Asunto(s)
Epilepsias Parciales , Proteínas de Homeodominio , Espasmos Infantiles , Animales , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Epilepsias Parciales/genética , Epilepsias Parciales/tratamiento farmacológico , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Proteínas de Homeodominio/genética , Mutación , Espasmos Infantiles/genética , Drosophila
11.
J Struct Biol ; 216(1): 108059, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38160703

RESUMEN

Cryogenic electron microscopy maps are valuable for determining macromolecule structures. A proper quality assessment method is essential for cryo-EM map selection or revision. This article presents DeepQs, a novel approach to estimate local quality for 3D cryo-EM density maps, using a deep-learning algorithm based on map-model fit score. DeepQs is a parameter-free method for users and incorporates structural information between map and its related atomic model into well-trained models by deep learning. More specifically, the DeepQs approach leverages the interplay between map and atomic model through predefined map-model fit score, Q-score. DeepQs can get close results to the ground truth map-model fit scores with only cryo-EM map as input. In experiments, DeepQs demonstrates the lowest root mean square error with standard method Fourier shell correlation metric and high correlation with map-model fit score, Q-score, when compared with other local quality estimation methods in high-resolution dataset (<=5 Å). DeepQs can also be applied to evaluate the quality of the post-processed maps. In both cases, DeepQs runs faster by using GPU acceleration. Our program is available at http://www.csbio.sjtu.edu.cn/bioinf/DeepQs for academic use.


Asunto(s)
Aprendizaje Profundo , Microscopía por Crioelectrón/métodos , Modelos Moleculares , Microscopía Electrónica , Algoritmos , Conformación Proteica
12.
BMC Genomics ; 25(1): 543, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822270

RESUMEN

Recent studies on co-transformation of the growth regulator, TaGRF4-GIF1 chimera (Growth Regulating Factor 4-GRF Interacting Factor 1), in cultivated wheat varieties (Triticum aestivum), showed improved regeneration efficiency, marking a significant breakthrough. Here, a simple and reproducible protocol using the GRF4-GIF1 chimera was established and tested in the medicinal orchid Dendrobium catenatum, a monocot orchid species. TaGRF4-GIF1 from T. aestivum and DcGRF4-GIF1 from D. catenatum were reconstructed, with the chimeras significantly enhancing the regeneration efficiency of D. catenatum through in planta transformation. Further, mutating the microRNA396 (miR396) target sites in TaGRF4 and DcGRF4 improved regeneration efficiency. The target mimicry version of miR396 (MIM396) not only boosted shoot regeneration but also enhanced plant growth. Our methods revealed a powerful tool for the enhanced regeneration and genetic transformation of D. catenatum.


Asunto(s)
Dendrobium , MicroARNs , Brotes de la Planta , Regeneración , Dendrobium/genética , Dendrobium/crecimiento & desarrollo , MicroARNs/genética , MicroARNs/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Regeneración/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética
13.
Mol Genet Genomics ; 299(1): 13, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396305

RESUMEN

Gamma (γ)-ray irradiation is one of the important modern breeding methods. Gamma-ray irradiation can affect the growth rate and other characteristics of plants. Plant growth rate is crucial for plants. In horticultural crops, the growth rate of plants is closely related to the growth of leaves and flowering time, both of which have important ornamental value. In this study, 60Co-γ-ray was used to treat P. equestris plants. After irradiation, the plant's leaf growth rate increased, and sugar content and antioxidant enzyme activity increased. Therefore, we used RNA-seq technology to analyze the differential gene expression and pathways of control leaves and irradiated leaves. Through transcriptome analysis, we investigated the reasons for the rapid growth of P. equestris leaves after irradiation. In the analysis, genes related to cell wall relaxation and glucose metabolism showed differential expression. In addition, the expression level of genes encoding ROS scavenging enzyme synthesis regulatory genes increased after irradiation. We identified two genes related to P. equestris leaf growth using VIGS technology: PeNGA and PeEXPA10. The expression of PeEXPA10, a gene related to cell wall expansion, was down-regulated, cell wall expansion ability decreased, cell size decreased, and leaf growth rate slowed down. The TCP-NGATHA (NGA) molecular regulatory module plays a crucial role in cell proliferation. When the expression of the PeNGA gene decreases, the leaf growth rate increases, and the number of cells increases. After irradiation, PeNGA and PeEXPA10 affect the growth of P. equestris leaves by influencing cell proliferation and cell expansion, respectively. In addition, many genes in the plant hormone signaling pathway show differential expression after irradiation, indicating the crucial role of plant hormones in plant leaf growth. This provides a theoretical basis for future research on leaf development and biological breeding.


Asunto(s)
Orchidaceae , Fitomejoramiento , Perfilación de la Expresión Génica , Genes de Plantas , RNA-Seq , Antioxidantes/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Hojas de la Planta , Regulación de la Expresión Génica de las Plantas , Transcriptoma/genética
14.
Ann Neurol ; 93(1): 164-174, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36214568

RESUMEN

OBJECTIVE: The glymphatic system cleans amyloid and tau proteins from the brain in animal studies of Alzheimer disease (AD). However, there is no direct evidence showing this in humans. METHODS: Participants (n = 50, 62.6 ± 5.4 years old, 36 women) with AD and normal controls underwent amyloid positron emission tomography (PET), tau PET, structural T1-weighted magnetic resonance imaging, and neuropsychological evaluation. Whole-brain glymphatic activity was measured by diffusion tensor image analysis along the perivascular space (DTI-ALPS). RESULTS: ALPS-indexes showed negative correlations with deposition of amyloid and tau on PET images and positive correlations with cognitive scores even after adjusting for age, sex, years of education, and APOE4 genotype covariates in multiple AD-related brain regions (all p < 0.05). Mediation analysis showed that ALPS-index acted as a significant mediator between regional standardized uptake value ratios of amyloid and tau images and cognitive dysfunction even after correcting for multiple covariates in AD-related brain regions. These regions are responsible for attention, memory, and executive function, which are vulnerable to sleep deprivation. INTERPRETATION: Glymphatic system activity may act as a significant mediator in AD-related cognitive dysfunction even after adjusting for multiple covariates and gray matter volumes. ALPS-index may provide useful disease progression or treatment biomarkers for patients with AD as an indicator of modulation of glymphatic activity. ANN NEUROL 2023;93:164-174.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Femenino , Humanos , Persona de Mediana Edad , Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Encéfalo/patología , Disfunción Cognitiva/patología , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo , Masculino
15.
Phys Rev Lett ; 132(23): 231002, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38905660

RESUMEN

We make forecasts for the constraining power of the 1D wavelet scattering transform when used with a Lyman-α forest cosmology survey. Using mock simulations and a Fisher matrix, we show that there is considerable cosmological information in the scattering transform coefficients not captured by the flux power spectrum. We estimate mock covariance matrices assuming uncorrelated Gaussian pixel noise for each quasar at a level drawn from a simple log-normal model. The extra information comes from a smaller estimated covariance in the first-order wavelet power and from second-order wavelet coefficients that probe non-Gaussian information in the forest. Forecast constraints on cosmological parameters from the wavelet scattering transform are more than an order of magnitude tighter than for the power spectrum, shrinking a 4D parameter space by a factor of 10^{6}. Should these improvements be realized with the Dark Energy Spectroscopic Instrument, inflationary running would be constrained to test common inflationary models predicting α_{s}=-6×10^{-4} and neutrino mass constraints would be improved enough for a 5-σ detection of the minimal neutrino mass.

16.
Front Zool ; 21(1): 16, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898504

RESUMEN

BACKGROUND: Parental care benefits offspring but comes with costs. To optimize the trade-off of costs and benefits, parents should adjust care based on intrinsic and/or extrinsic conditions. The harm to offspring hypothesis suggests that parents should invest more in younger offspring than older offspring because younger offspring are more vulnerable. However, this hypothesis has rarely been comprehensively tested, as many studies only reveal an inverse correlation between parental care and offspring age, without directly testing the effects of offspring age on their vulnerability. To test this hypothesis, we studied Kurixalus eiffingeri, an arboreal treefrog with paternal care. We first performed a field survey by monitoring paternal care during embryonic development. Subsequently, we conducted a field experiment to assess the prevalence of egg predators (a semi-slug, Parmarion martensi) and the plasticity of male care. Finally, we conducted a laboratory experiment to assess how embryo age affects predation by P. martensi. RESULTS: Our results showed that (1) male attendance and brooding frequency affected embryo survival, and (2) males attended and brooded eggs more frequently in the early stage than in the late stage. The experimental results showed that (3) males increased attendance frequency when the predators were present, and (4) the embryonic predation by the semi-slug during the early was significantly higher than in the late stage. CONCLUSIONS: Our findings highlight the importance of paternal care to embryo survival, and the care behavior is plastic. Moreover, our results provide evidence consistent with the predictions of the harm to offspring hypothesis, as males tend to care more for younger offspring which are more vulnerable.

17.
Eur Radiol ; 34(4): 2593-2604, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37812297

RESUMEN

OBJECTIVES: To develop a multitask deep learning (DL) algorithm to automatically classify mammography imaging findings and predict the existence of extensive intraductal component (EIC) in invasive breast cancer. METHODS: Mammograms with invasive breast cancers from 2010 to 2019 were downloaded for two radiologists performing image segmentation and imaging findings annotation. Images were randomly split into training, validation, and test datasets. A multitask approach was performed on the EfficientNet-B0 neural network mainly to predict EIC and classify imaging findings. Three more models were trained for comparison, including a single-task model (predicting EIC), a two-task model (predicting EIC and cell receptor status), and a three-task model (combining the abovementioned tasks). Additionally, these models were trained in a subgroup of invasive ductal carcinoma. The DeLong test was used to examine the difference in model performance. RESULTS: This study enrolled 1459 breast cancers on 3076 images. The EIC-positive rate was 29.0%. The three-task model was the best DL model with an area under the curve (AUC) of EIC prediction of 0.758 and 0.775 at the image and breast (patient) levels, respectively. Mass was the most accurately classified imaging finding (AUC = 0.915), followed by calcifications and mass with calcifications (AUC = 0.878 and 0.824, respectively). Cell receptor status prediction was less accurate (AUC = 0.625-0.653). The multitask approach improves the model training compared to the single-task model, but without significant effects. CONCLUSIONS: A mammography-based multitask DL model can perform simultaneous imaging finding classification and EIC prediction. CLINICAL RELEVANCE STATEMENT: The study results demonstrated the potential of deep learning to extract more information from mammography for clinical decision-making. KEY POINTS: • Extensive intraductal component (EIC) is an independent risk factor of local tumor recurrence after breast-conserving surgery. • A mammography-based deep learning model was trained to predict extensive intraductal component close to radiologists' reading. • The developed multitask deep learning model could perform simultaneous imaging finding classification and extensive intraductal component prediction.


Asunto(s)
Neoplasias de la Mama , Calcinosis , Aprendizaje Profundo , Humanos , Femenino , Neoplasias de la Mama/patología , Mamografía/métodos , Mama/diagnóstico por imagen
18.
Appl Opt ; 63(7): 1854-1866, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437290

RESUMEN

As a typical form of optical fringes with a quadratic phase, Newton's ring patterns play an important role in spherical measurements and optical interferometry. A variety of methods have been used to analyze Newton's ring patterns. However, it is still rather challenging to fulfill the analysis. We present a deep-learning-based method to estimate the parameters of Newton's ring patterns and fulfill the analysis accordingly. The experimental results indicate the excellent accuracy, noise robustness, and demodulation efficiency of our method. It provides another applicable approach to analyzing Newton's ring patterns and brings insights into fringe analysis and interferometry-based measurements.

19.
J Infect Chemother ; 30(3): 255-257, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37832823

RESUMEN

Posaconazole is a potent, extended-spectrum triazole antifungal used for the treatment and prophylaxis of serious fungal infections. Previous reports have demonstrated hyperlipidemia resulted in significant changes in posaconazole pharmacokinetics and tissue distribution in rats. However, the effect of hyperlipidemia on the pharmacokinetics of posaconazole in patients has not yet been reported. We report a case of a 34-year-old woman who experienced a supratherapeutic posaconazole trough concentration (PTC) associated with hyperlipidemia after haploidentical hematopoietic stem cell transplantation (HSCT). The patient was admitted 13 months after HSCT for recurrent cough and sputum. She was treated with caspofungin due to developing invasive fungal infection of Candida tropicalis. After 10 days, caspofungin was discontinued due to the poor therapeutic efficacy and replaced with amphotericin B. Afterwards, the condition of the patient improved significantly and she was switched to daily oral posaconazole tablet. Therapeutic drug monitoring (TDM) of posaconazole showed a PTC was 3.2 mg/L. After discharge, she continued to receive posaconazole tablet as antifungal treatment. Two months later, laboratory tests at outpatient showed her blood lipid levels were significantly elevated and PTC was increased to 9.38 mg/L. Therefore, the posaconazole tablet was discontinued and she received lipid-lowering therapy. A few days later, the PTC was down to 5.22 mg/L. No medication errors and significant drug interactions were found. Hence, supratherapeutic PTC for this patient may be caused by hyperlipidemia which altered pharmacokinetics of posaconazole. Our findings highlight the need for close TDM in order to avoid supratherapeutic PTC if hyperlipidimia occurs during posaconazole use.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Hiperlipidemias , Humanos , Femenino , Animales , Ratas , Adulto , Antifúngicos , Hiperlipidemias/tratamiento farmacológico , Caspofungina , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Triazoles/efectos adversos , Lípidos , Comprimidos
20.
Genomics ; 115(6): 110739, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37918455

RESUMEN

To study the mitochondrial and cellular responses to physiological and pathological hypoxia, corneal epithelial cells were preconditioned under 21% O2, 8% O2 or 1% O2. The cell survival rate, mitochondrial fluorescence and mitophagy flux were quantified using flow cytometry. After RNA sequencing, gene set enrichment analysis (GSEA) was performed. When the oxygen level decreased from 21% to 8%, mitochondrial fluorescence decreased by 45% (p < 0.001), accompanied by an 80% increase in mitophagy flux (p < 0.001). When the oxygen level dropped to 1%, the cell survival rate and mitochondrial fluorescence decreased, while mitophagy flux further increased (each p < 0.001). Comparison of 1% O2 vs. 21% O2 revealed enrichment of the HYPOXIA hallmark. Most of the significantly enriched mitochondrion-related gene sets were involved in apoptosis. The corresponding foremost leading edge genes belonged to the BCL-2 family. Corneal epithelial cell fate decisions under hypoxia may involve noncanonical pathways of mitophagy.


Asunto(s)
Epitelio Corneal , Mitofagia , Humanos , Mitofagia/genética , Epitelio Corneal/metabolismo , Hipoxia de la Célula/genética , Hipoxia/metabolismo , Oxígeno/metabolismo , Mitocondrias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA