Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Genet Mol Biol ; 47(2): e20230170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626573

RESUMEN

Pathogenic DNA alterations in GJB2 are present in nearly half of non-syndromic hearing loss cases with autosomal recessive inheritance. The most frequent variant in GJB2 causing non-syndromic hearing loss is the frameshifting c.35del. GJB2 encodes Cx26, a protein of the connexin family that assembles hemichannels and gap junctions. The expression of paralogous proteins is believed to compensate for the loss of function of specific connexins. As Cx26 has been involved in cell differentiation in distinct tissues, we employed stem cells derived from human exfoliated deciduous teeth (SHEDs), homozygous for the c.35del variant, to assess GJB2 roles in stem cell differentiation and the relationship between its loss of function and the expression of paralogous genes. Primary SHED cultures from patients and control individuals were compared. SHEDs from patients had significantly less GJB2 mRNA and increased amount of GJA1 (Cx43), but not GJB6 (Cx30) or GJB3 (Cx31) mRNA. In addition, they presented higher induced differentiation to adipocytes and osteocytes but lower chondrocyte differentiation. Our results suggest that GJA1 increased expression may be involved in functional compensation for GJB2 loss of function in human stem cells, and it may explain changes in differentiation properties observed in SHEDs with and without the c.35del variant.

2.
Hum Mol Genet ; 29(22): 3691-3705, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33326993

RESUMEN

Hearing loss is a frequent sensory impairment in humans and genetic factors account for an elevated fraction of the cases. We have investigated a large family of five generations, with 15 reported individuals presenting non-syndromic, sensorineural, bilateral and progressive hearing loss, segregating as an autosomal dominant condition. Linkage analysis, using SNP-array and selected microsatellites, identified a region of near 13 cM in chromosome 20 as the best candidate to harbour the causative mutation. After exome sequencing and filtering of variants, only one predicted deleterious variant in the NCOA3 gene (NM_181659, c.2810C > G; p.Ser937Cys) fit in with our linkage data. RT-PCR, immunostaining and in situ hybridization showed expression of ncoa3 in the inner ear of mice and zebrafish. We generated a stable homozygous zebrafish mutant line using the CRISPR/Cas9 system. ncoa3-/- did not display any major morphological abnormalities in the ear, however, anterior macular hair cells showed altered orientation. Surprisingly, chondrocytes forming the ear cartilage showed abnormal behaviour in ncoa3-/-, detaching from their location, invading the ear canal and blocking the cristae. Adult mutants displayed accumulation of denser material wrapping the otoliths of ncoa3-/- and increased bone mineral density. Altered zebrafish swimming behaviour corroborates a potential role of ncoa3 in hearing loss. In conclusion, we identified a potential candidate gene to explain hereditary hearing loss, and our functional analyses suggest subtle and abnormal skeletal behaviour as mechanisms involved in the pathogenesis of progressive sensory function impairment.


Asunto(s)
Sordera/genética , Predisposición Genética a la Enfermedad , Pérdida Auditiva Sensorineural/genética , Coactivador 3 de Receptor Nuclear/genética , Adulto , Animales , Sordera/patología , Modelos Animales de Enfermedad , Oído Interno/metabolismo , Oído Interno/patología , Exoma/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Pérdida Auditiva Sensorineural/patología , Humanos , Masculino , Ratones , Linaje , Secuenciación del Exoma , Pez Cebra/genética
3.
Hum Genet ; 141(3-4): 539-581, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34652575

RESUMEN

Latin America comprises all countries from South and Central America, in addition to Mexico. It is characterized by a complex mosaic of regions with heterogeneous genetic profiles regarding the geographical origin of the ancestors and proportions of admixture between the Native American, European and African components. In the first years following the findings of the role of the GJB2/GJB6 genes in the etiology of hearing loss, most scientific investigations about the genetics of hearing loss in Latin America focused on assessing the frequencies of pathogenic variants in these genes. More recently, modern techniques allowed researchers in Latin America to make exciting contributions to the finding of new candidate genes, novel mechanisms of inheritance in previously known genes, and characterize a wide diversity of variants, many of them unique to Latin America. This review aimed to provide a general landscape of the genetic studies about non-syndromic hearing loss in Latin America and their main scientific contributions. It allows the conclusion that, although there are similar contributions of some genes, such as GJB2/GJB6, when compared to European and North American countries, Latin American populations revealed some peculiarities that indicate the need for tailored strategies of screening and diagnosis to specific geographic regions.


Asunto(s)
Sordera , Pérdida Auditiva , Población Negra , Conexina 26/genética , Conexinas/genética , Sordera/genética , Pérdida Auditiva/genética , Humanos , América Latina , Mutación
4.
J Hum Genet ; 64(3): 257-260, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30514912

RESUMEN

Mutations in the CEACAM6 gene were first described as causing autosomal dominant nonsyndromic hearing loss, but two splice-altering variants have been recently described as causing autosomal recessive nonsyndromic hearing loss. We describe the novel and extremely rare loss-of-function variant c.436 C > T/p.(Arg146Ter) in the CEACAM16 gene segregating with post-lingual progressive autosomal recessive hearing loss. This variant is predicted to significantly reduce the size of the wild type protein. Our results give additional support that loss-of-function variants in CEACAM16 cause autosomal recessive hearing loss in humans.


Asunto(s)
Antígenos CD/genética , Moléculas de Adhesión Celular/genética , Sordera/genética , Genes Recesivos , Mutación , Femenino , Proteínas Ligadas a GPI/genética , Humanos , Masculino , Linaje
5.
BMC Med Genet ; 19(1): 73, 2018 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-29739340

RESUMEN

BACKGROUND: Mutations in the SLC26A4 gene are associated with Pendred syndrome and autosomal recessive non-syndromic deafness (DFNB4). Both disorders have similar audiologic characteristics: bilateral hearing loss, often severe or profound, which may be associated with abnormalities of the inner ear, such as dilatation of the vestibular aqueduct or Mondini dysplasia. But, in Pendred syndrome (OMIM #274600), with autosomal recessive inheritance, besides congenital sensorineural deafness, goiter or thyroid dysfunctions are frequently present. The aim of this study was to determine whether mutations in SLC26A4 are a frequent cause of hereditary deafness in Brazilian patients. METHODS: Microsatellite haplotypes linked to SLC26A4 were investigated in 68 families presenting autosomal recessive non-syndromic deafness. In the probands of the 16 families presenting segregation consistent with linkage to SLC26A4, Sanger sequencing of the 20 coding exons was performed. In an additional sample of 15 individuals with suspected Pendred syndrome, because of the presence of hypothyroidism or cochleovestibular malformations, the SLC26A4 gene coding region was also sequenced. RESULTS: In two of the 16 families with indication of linkage to SLC26A4, the probands were found to be compound heterozygotes for probably pathogenic different mutations: three novel (c.1003 T > G (p. F335 V), c.1553G > A (p.W518X), c.2235 + 2 T > C (IVS19 + 2 T > C), and one already described, c.84C > A (p.S28R). Two of the 15 individuals with suspected Pendred syndrome because of hypothyreoidism or cochleovestibular malformations were monoallelic for likely pathogenic mutations: a splice mutation (IVS7 + 2 T > C) and the previously described c.1246A > C (p.T416P). Pathogenic copy number variations were excluded in the monoallelic cases and in those with normal results after Sanger sequencing. Additional mutations in the SLC26A4 gene or other definite molecular cause for deafness were not identified in the monoallelic patients, after exome sequencing. CONCLUSIONS: Biallelic pathogenic mutations in SLC26A4 explained ~ 3% of cases selected because of autosomal recessive deafness. Monoallelic mutations were present in ~ 13% of isolated cases of deafness with cochleovestibular malformations or suspected Pendred syndrome. These data reinforce the importance of mutation screening of SLC26A4 in Brazilian subjects and highlight the elevated frequency of monoallelic patients.


Asunto(s)
Bocio Nodular/genética , Pérdida Auditiva Sensorineural/genética , Mutación , Análisis de Secuencia de ADN/métodos , Transportadores de Sulfato/genética , Brasil , Análisis Mutacional de ADN , Femenino , Haplotipos , Humanos , Masculino , Repeticiones de Microsatélite , Linaje
7.
Am J Hum Biol ; 29(2)2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27761960

RESUMEN

OBJECTIVES: Quilombo remnants are relics of communities founded by runaway or abandoned African slaves, but often with subsequent extensive and complex admixture patterns with European and Native Americans. We combine a genetic study of Y-chromosome markers with anthropological surveys in order to obtain a portrait of quilombo structure and history in the region that has the largest number of quilombo remnants in the state of São Paulo. METHODS: Samples from 289 individuals from quilombo remnants were genotyped using a set of 17 microsatellites on the Y chromosome (AmpFlSTR-Yfiler). A subset of 82 samples was also genotyped using SNPs array (Axiom Human Origins-Affymetrix). We estimated haplotype and haplogroup frequencies, haplotype diversity and sharing, and pairwise genetic distances through FST and RST indexes. RESULTS: We identified 95 Y chromosome haplotypes, classified into 15 haplogroups. About 63% are European, 32% are African, and 6% Native American. The most common were: R1b (European, 34.2%), E1b1a (African, 32.3%), J1 (European, 6.9%), and Q (Native American, 6.2%). Genetic differentiation among communities was low (FST = 0.0171; RST = 0.0161), and haplotype sharing was extensive. Genetic, genealogical and oral surveys allowed us to detect five main founder haplotypes, which explained a total of 27.7% of the Y chromosome lineages. CONCLUSIONS: Our results showed a high European patrilineal genetic contribution among the founders of quilombos, high amounts of gene flow, and a recent common origin of these populations. Common haplotypes and genealogical data indicate the origin of quilombos from a few male individuals. Our study reinforces the importance of a dual approach, involving the analysis of both anthropological and genetic data.


Asunto(s)
Cromosomas Humanos Y/genética , Haplotipos , Herencia Paterna , Polimorfismo de Nucleótido Simple , Población Negra/genética , Brasil , Humanos , Repeticiones de Microsatélite , Población Rural
8.
Genet Mol Biol ; 38(1): 37-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25983622

RESUMEN

Ectrodactyly - ectodermal dysplasia and cleft lip/palate (EEC) syndrome (OMIM 604292) is a rare disorder determined by mutations in the TP63 gene. Most cases of EEC syndrome are associated to mutations in the DNA binding domain (DBD) region of the p63 protein. Here we report on a three-generation Brazilian family with three individuals (mother, son and grandfather) affected by EEC syndrome, determined by a novel mutation c.1037C > G (p.Ala346Gly). The disorder in this family exhibits a broad spectrum of phenotypes: two individuals were personally examined, one presenting the complete constellation of EEC syndrome manifestations and the other presenting an intermediate phenotype; the third affected, a deceased individual not examined personally and referred to by his daughter, exhibited only the split-hand/foot malformation (SHFM). Our findings contribute to elucidate the complex phenotype-genotype correlations in EEC syndrome and other related TP63-mutation syndromes. The possibility of the mutation c.1037C > G being related both to acro-dermato-ungual-lacrimal-tooth (ADULT) syndrome and SHFM is also raised by the findings here reported.

9.
Hum Biol ; 86(4): 276-88, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25959694

RESUMEN

This article deals with the estimation of inbreeding and substructure levels in a set of 10 (later regrouped as eight) African-derived quilombo communities from the Ribeira River Valley in the southern portion of the state of São Paulo, Brazil. Inbreeding levels were assessed through F-values estimated from the direct analysis of genealogical data and from the statistical analysis of a large set of 30 molecular markers. The levels of population substructure found were modest, as was the degree of inbreeding: in the set of all communities considered together, F-values were 0.00136 and 0.00248 when using raw and corrected data from their complete genealogical structures, respectively, and 0.022 and 0.036 when using the information taken from the statistical analysis of all 30 loci and of 14 single-nucleotide polymorphic loci, respectively. The overall frequency of consanguineous marriages in the set of all communities considered together was ∼ 2%. Although modest, the values of the estimated parameters are much larger than those obtained for the overall Brazilian population and in general much smaller than the ones recorded for other Brazilian isolates. To circumvent problems related to heterogeneous sampling and virtual absence of reliable records of biological relationships, we had to develop or adapt several methods for making valid estimates of the prescribed parameters.


Asunto(s)
Población Negra , Consanguinidad , Filogenia , Brasil/epidemiología , Frecuencia de los Genes , Variación Genética , Genética de Población , Humanos , Prevalencia
10.
J Med Genet ; 49(2): 119-25, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22147889

RESUMEN

BACKGROUND: Split-hand/foot malformation (SHFM)-also known as ectrodactyly-is a congenital disorder characterised by severe malformations of the distal limbs affecting the central rays of hands and/or feet. A distinct entity termed SHFLD presents with SHFM and long bone deficiency. Mouse models suggest that a defect of the central apical ectodermal ridge leads to the phenotype. Although six different loci/mutations (SHFM1-6) have been associated with SHFM, the underlying cause in a large number of cases is still unresolved. METHODS: High resolution array comparative genomic hybridisation (CGH) was performed in patients with SHFLD to detect copy number changes. Candidate genes were further evaluated for expression and function during limb development by whole mount in situ hybridisation and morpholino knock-down experiments. RESULTS: Array CGH showed microduplications on chromosome 17p13.3, a locus previously associated with SHFLD. Detailed analysis of 17 families revealed that this copy number variation serves as a susceptibility factor for a highly variable phenotype with reduced penetrance, particularly in females. Compared to other known causes for SHFLD 17p duplications appear to be the most frequent cause of SHFLD. A ~11.8 kb minimal critical region was identified encompassing a single gene, BHLHA9, a putative basic loop helix transcription factor. Whole mount in situ hybridisation showed expression restricted to the limb bud mesenchyme underlying the apical ectodermal ridge in mouse and zebrafish embryos. Knock down of bhlha9 in zebrafish resulted in shortening of the pectoral fins. CONCLUSIONS: Genomic duplications encompassing BHLHA9 are associated with SHFLD and non-Mendelian inheritance characterised by a high degree of non-penetrance with sex bias. Knock-down of bhlha9 in zebrafish causes severe reduction defects of the pectoral fin, indicating a role for this gene in limb development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ectromelia/genética , Duplicación de Gen , Deformidades Congénitas de la Mano/genética , Patrón de Herencia , Tibia/anomalías , Animales , Femenino , Dedos/anomalías , Técnicas de Silenciamiento del Gen , Estudios de Asociación Genética , Genotipo , Humanos , Deformidades Congénitas de las Extremidades/genética , Masculino , Linaje , Fenotipo , Pez Cebra/embriología , Pez Cebra/genética
11.
Am J Hum Biol ; 25(1): 35-41, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23124977

RESUMEN

OBJECTIVES: xMany Africans were brought to Brazil as slaves. The runaway or abandoned slaves founded isolated communities named quilombos. There are many quilombo remnants in Vale do Ribeira region in the southern part of São Paulo State. The aim of our study was to contribute to understanding the origins of these populations, through admixture studies. METHODS: We genotyped 307 unrelated DNA samples obtained from ten quilombo populations from Vale do Ribeira region, using a panel of 48 INDEL polymorphisms. We estimated genetic differentiation between populations (F(ST) ) and genomic ancestry from these populations. Our data were compared to a similar study performed in quilombo remnants from the Brazilian Amazon region. RESULTS: Population admixture estimates showed high degree of miscegenation in the quilombo remnants from Vale do Ribeira (average admixture estimates at 39.7% of African, 39.0% of European and 21.3% of Amerindian contribution). The proportions of ancestral genes varied greatly among individuals, ranging from 7.3 to 69.5%, 12.9 to 68.3%, and 7.3 to 58.5% (African, European, and Amerindian, respectively). Genetic differentiation between these populations was low (all F(ST) values <5%), indicating gene flow between them. Both groups of quilombos, from Vale do Ribeira and Amazon, presented similar patterns of admixture. CONCLUSIONS: INDEL markers were useful to evidence the triple interbreeding among African, European, and Amerindian in the formation of quilombo populations. The low F(ST) values suggested gene flow among quilombos from Vale do Ribeira. Our data highlight the important role of Amerindians in the formation of quilombo populations.


Asunto(s)
Población Negra/genética , Variación Genética , Brasil , Cruzamiento , Femenino , Frecuencia de los Genes , Genómica , Genotipo , Humanos , Mutación INDEL , Indígenas Sudamericanos/genética , Masculino , Análisis de Secuencia de ADN , Población Blanca/genética
12.
Audiol Res ; 14(1): 9-25, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38391765

RESUMEN

Waardenburg syndrome (WS) is characterized by hearing loss and pigmentary abnormalities of the eyes, hair, and skin. The condition is genetically heterogeneous, and is classified into four clinical types differentiated by the presence of dystopia canthorum in type 1 and its absence in type 2. Additionally, limb musculoskeletal abnormalities and Hirschsprung disease differentiate types 3 and 4, respectively. Genes PAX3, MITF, SOX10, KITLG, EDNRB, and EDN3 are already known to be associated with WS. In WS, a certain degree of molecularly undetected patients remains, especially in type 2. This study aims to pinpoint causative variants using different NGS approaches in a cohort of 26 Brazilian probands with possible/probable diagnosis of WS1 (8) or WS2 (18). DNA from the patients was first analyzed by exome sequencing. Seven of these families were submitted to trio analysis. For inconclusive cases, we applied a targeted NGS panel targeting WS/neurocristopathies genes. Causative variants were detected in 20 of the 26 probands analyzed, these being five in PAX3, eight in MITF, two in SOX10, four in EDNRB, and one in ACTG1 (type 2 Baraitser-Winter syndrome, BWS2). In conclusion, in our cohort of patients, the detection rate of the causative variant was 77%, confirming the superior detection power of NGS in genetically heterogeneous diseases.

13.
Nat Commun ; 13(1): 1004, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246524

RESUMEN

As whole-genome sequencing (WGS) becomes the gold standard tool for studying population genomics and medical applications, data on diverse non-European and admixed individuals are still scarce. Here, we present a high-coverage WGS dataset of 1,171 highly admixed elderly Brazilians from a census-based cohort, providing over 76 million variants, of which ~2 million are absent from large public databases. WGS enables identification of ~2,000 previously undescribed mobile element insertions without previous description, nearly 5 Mb of genomic segments absent from the human genome reference, and over 140 alleles from HLA genes absent from public resources. We reclassify and curate pathogenicity assertions for nearly four hundred variants in genes associated with dominantly-inherited Mendelian disorders and calculate the incidence for selected recessive disorders, demonstrating the clinical usefulness of the present study. Finally, we observe that whole-genome and HLA imputation could be significantly improved compared to available datasets since rare variation represents the largest proportion of input from WGS. These results demonstrate that even smaller sample sizes of underrepresented populations bring relevant data for genomic studies, especially when exploring analyses allowed only by WGS.


Asunto(s)
Genómica , Metagenómica , Anciano , Brasil/epidemiología , Genoma Humano/genética , Genómica/métodos , Humanos , Polimorfismo de Nucleótido Simple , Secuenciación Completa del Genoma
14.
Ann Hum Biol ; 38(2): 210-8, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20812880

RESUMEN

BACKGROUND AND AIM: Knowledge about the genetic factors responsible for noise-induced hearing loss (NIHL) is still limited. This study investigated whether genetic factors are associated or not to susceptibility to NIHL. SUBJECTS AND METHODS: The family history and genotypes were studied for candidate genes in 107 individuals with NIHL, 44 with other causes of hearing impairment and 104 controls. Mutations frequently found among deaf individuals were investigated (35delG, 167delT in GJB2, Δ(GJB6- D13S1830), Δ(GJB6- D13S1854) in GJB6 and A1555G in MT-RNR1 genes); allelic and genotypic frequencies were also determined at the SNP rs877098 in DFNB1, of deletions of GSTM1 and GSTT1 and sequence variants in both MTRNR1 and MTTS1 genes, as well as mitochondrial haplogroups. RESULTS: When those with NIHL were compared with the control group, a significant increase was detected in the number of relatives affected by hearing impairment, of the genotype corresponding to the presence of both GSTM1 and GSTT1 enzymes and of cases with mitochondrial haplogroup L1. CONCLUSION: The findings suggest effects of familial history of hearing loss, of GSTT1 and GSTM1 enzymes and of mitochondrial haplogroup L1 on the risk of NIHL. This study also described novel sequence variants of MTRNR1 and MTTS1 genes.


Asunto(s)
Predisposición Genética a la Enfermedad , Glutatión Transferasa/genética , Pérdida Auditiva Provocada por Ruido/genética , Adulto , Secuencia de Bases , Brasil , Conexina 26 , Conexina 30 , Conexinas/genética , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Genotipo , Haplotipos , Pérdida Auditiva/genética , Humanos , Masculino , Persona de Mediana Edad , Mitocondrias/genética , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
15.
J Hum Genet ; 54(7): 382-5, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19461658

RESUMEN

The OTOF gene encoding otoferlin is associated with auditory neuropathy (AN), a type of non-syndromic deafness. We investigated the contribution of OTOF mutations to AN and to non-syndromic recessive deafness in Brazil. A test for the Q829X mutation was carried out on a sample of 342 unrelated individuals with non-syndromic hearing loss, but none presented this mutation. We selected 48 cases suggestive of autosomal recessive inheritance, plus four familial and seven isolated cases of AN, for genotyping of five microsatellite markers linked to the OTOF gene. The haplotype analysis showed compatibility with linkage in 11 families (including the four families with AN). Samples of the 11 probands from these families and from seven isolated cases of AN were selected for an exon-by-exon screening for mutations in the OTOF gene. Ten different pathogenic variants were detected, among which six are novel. Among the 52 pedigrees with autosomal recessive inheritance (including four familial cases of AN), mutations were identified in 4 (7.7%). Among the 11 probands with AN, seven had at least one pathogenic mutation in the OTOF gene. Mutations in the OTOF gene are frequent causes of AN in Brazil and our results confirm that they are spread worldwide.


Asunto(s)
Sordera/genética , Proteínas de la Membrana/genética , Mutación/genética , Brasil , Estudios de Casos y Controles , Pruebas Genéticas , Humanos , Mutación Missense/genética
16.
Ear Hear ; 30(1): 1-7, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19125024

RESUMEN

OBJECTIVE: Hereditary nonsyndromic deafness is an autosomal recessive condition in about 80% of cases, and point mutations in the GJB2 gene (connexin 26) and two deletions in the GJB6 gene (connexin 30), del(GJB6-D13S1830) and del(GJB6-D13S1854), are reported to account for 50% of recessive deafness. Aiming at establishing the frequencies of GJB2 mutations and GJB6 deletions in the Brazilian population, we screened 300 unrelated individuals with hearing impairment, who were not affected by known deafness related syndromes. METHODS: We firstly screened the most frequently reported mutations, c.35delG and c.167delT in the GJB2 gene, and del(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6 gene, through specific techniques. The detected c.35delG and c.167delT mutations were validated by sequencing. Other mutations in the GJB2 gene were screened by single-strand conformation polymorphism and the coding region was sequenced when abnormal patterns were found. RESULTS: Pathogenic mutations in GJB2 and GJB6 genes were detected in 41 individuals (13.7%), and 80.5% (33/41) presented these mutations in homozygosis or compound heterozygosis, thus explaining their hearing defect. The c.35delG in the GJB2 gene was the most frequent mutation (37/300; 12.4%), detected in 23% familial and 6.2% the sporadic cases. The second most frequent mutation (1%; 3/300) was the del(GJB6-D13S1830), always found associated with the c.35delG mutation. Nineteen different sequence variations were found in the GJB2 gene. In addition to the c.35delG mutation, nine known pathogenic alterations were detected c.167delT, p.Trp24X, p.Val37Ile, c.176_191del16, c.235delC, p.Leu90Pro, p.Arg127His, c.509insA, and p.Arg184Pro. Five substitutions had been previously considered benign polymorphisms: c.-15C>T, p.Val27Ile, p.Met34Thr, p.Ala40Ala, and p.Gly160Ser. Two previously reported mutations of unknown pathogenicity were found (p.Lys168Arg, and c.684C>A), and two novel substitutions, p.Leu81Val (c.G241C) and p.Met195Val (c.A583G), both in heterozygosis without an accompanying mutation in the other allele. None of these latter four variants of undefined status was present in a sample of 100 hearing controls. CONCLUSIONS: The present study demonstrates that mutations in the GJB2 gene and del(GJB6 D13S1830) are important causes of hearing impairment in Brazil, thus justifying their screening in a routine basis. The diversity of variants in our sample reflects the ethnic heterogeneity of the Brazilian population.


Asunto(s)
Conexinas/genética , Pérdida Auditiva/genética , Mutación , Alelos , Sustitución de Aminoácidos , Brasil , Estudios de Cohortes , Conexina 26 , Conexina 30 , Frecuencia de los Genes , Asesoramiento Genético , Genotipo , Pérdida Auditiva/diagnóstico , Pérdida Auditiva/fisiopatología , Heterocigoto , Humanos , Polimorfismo Conformacional Retorcido-Simple , Índice de Severidad de la Enfermedad
17.
Cell Transplant ; 28(1): 55-64, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30380914

RESUMEN

Post-traumatic lesions with transection of the facial nerve present limited functional outcome even after repair by gold-standard microsurgical techniques. Stem cell engraftment combined with surgical repair has been reported as a beneficial alternative. However, the best association between the source of stem cell and the nature of conduit, as well as the long-term postoperative cell viability are still matters of debate. We aimed to assess the functional and morphological effects of stem cells from human exfoliated deciduous teeth (SHED) in polyglycolic acid tube (PGAt) combined with autografting of rat facial nerve on repair after neurotmesis. The mandibular branch of rat facial nerve submitted to neurotmesis was repaired by autograft and PGAt filled with purified basement membrane matrix with or without SHED. Outcome variables were compound muscle action potential (CMAP) and axon morphometric. Animals from the SHED group had mean CMAP amplitudes and mean axonal diameters significantly higher than the control group ( p < 0.001). Mean axonal densities were significantly higher in the control group ( p = 0.004). The engrafted nerve segment resected 6 weeks after surgery presented cells of human origin that were positive for the Schwann cell marker (S100), indicating viability of transplanted SHED and a Schwann cell-like phenotype. We conclude that regeneration of the mandibular branch of the rat facial nerve was improved by SHED within PGAt. The stem cells integrated and remained viable in the neural tissue for 6 weeks since transplantation, and positive labeling for S100 Schwann-cell marker suggests cells initiated in vivo differentiation.


Asunto(s)
Células Madre Mesenquimatosas/citología , Regeneración Nerviosa/fisiología , Células Madre/citología , Diente Primario/citología , Animales , Axones/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratas Wistar , Células Madre/metabolismo , Diente Primario/metabolismo
18.
Braz J Otorhinolaryngol ; 85(4): 520-529, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31186186

RESUMEN

INTRODUCTION: Mammalian hair cells and auditory neurons do not show regenerative capacity. Hence, damage to these cell types is permanent and leads to hearing loss. However, there is no treatment that re-establishes auditory function. Regenerative therapies using stem cells represent a promising alternative. OBJECTIVE: This article aims to review the current literature about the main types of stem cells with potential for application in cell therapy for sensorineural hearing loss, the most relevant experiments already performed in animals, as well as the advances that have been recently made in the field. METHODS: Research included the databases PubMed/MEDLINE, Web of Science, Science Direct and SciELO, as well as gray literature. Search strategy included the following main terms: "stem cells", "hair cells" and "auditory neurons". Additionally, the main terms were combined with the following secondary terms: "mesenchymal", "iPS", "inner ear", "auditory". The research was conducted independently by three researchers. RESULTS: Differentiation of stem cells into hair cells and auditory neurons has a high success rate, reaching up to 82% for the first and 100% for the latter. Remarkably, these differentiated cells are able to interact with hair cells and auditory neurons of cochlear explants through formation of new synapses. When transplanted into the cochlea of animals with hearing loss, auditory restoration has been documented to date only in deafferented animals. CONCLUSION: Advances have been more prominent in cases of auditory neuropathy, since partial improvement of auditory nerve conditions through cell-based therapy may increase the number of patients who can successfully receive cochlear implants.


Asunto(s)
Pérdida Auditiva Sensorineural/terapia , Trasplante de Células Madre , Animales , Diferenciación Celular , Nervio Coclear/citología , Células Ciliadas Auditivas , Humanos
19.
Hum Genet ; 123(6): 625-31, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18493797

RESUMEN

Split-hand/foot malformation (SHFM) associated with aplasia of long bones, SHFLD syndrome or Tibial hemimelia-ectrodactyly syndrome is a rare condition with autosomal dominant inheritance, reduced penetrance and an incidence estimated to be about 1 in 1,000,000 liveborns. To date, three chromosomal regions have been reported as strong candidates for harboring SHFLD syndrome genes: 1q42.2-q43, 6q14.1 and 2q14.2. We characterized the phenotype of nine affected individuals from a large family with the aim of mapping the causative gene. Among the nine affected patients, four had only SHFM of the hands and no tibial defects, three had both defects and two had only unilateral tibial hemimelia. In keeping with previous publications of this and other families, there was clear evidence of both variable expression and incomplete penetrance, the latter bearing hallmarks of anticipation. Segregation analysis and multipoint Lod scores calculations (maximum Lod score of 5.03 using the LINKMAP software) using all potentially informative family members, both affected and unaffected, identified the chromosomal region 17p13.1-17p13.3 as the best and only candidate for harboring a novel mutated gene responsible for the syndrome in this family. The candidate gene CRK located within this region was sequenced but no pathogenic mutation was detected.


Asunto(s)
Cromosomas Humanos Par 17 , Ectromelia/complicaciones , Deformidades Congénitas de las Extremidades/genética , Tibia/anomalías , Ectromelia/genética , Femenino , Ligamiento Genético , Humanos , Deformidades Congénitas de las Extremidades/complicaciones , Escala de Lod , Masculino , Linaje , Síndrome
20.
Am J Med Genet A ; 146A(24): 3126-31, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19012338

RESUMEN

We describe an apparently new genetic syndrome in six members of a family living in a remote area in Northeastern Brazil. This syndrome comprises: short stature due to a marked decrease in the length of the lower limbs (predominantly mesomelic with fibular agenesis/marked hypoplasia), grossly malformed/deformed clubfeet with severe oligodactyly, upper limbs with acromial dimples and variable motion limitation of the forearms and/or hands, severe nail hypoplasia/anonychia sometimes associated with mild brachydactyly and occasionally with pre-axial polydactyly. This syndrome is apparently distinct from the syndrome of brachydactyly-ectrodactyly with fibular aplasia or hypoplasia (OMIM 113310), the syndrome of fibular aplasia or hypoplasia, femoral bowing and poly-, syn-, and oligodactyly (OMIM 228930), and from other previously described conditions exhibiting fibular agenesis/hypoplasia.


Asunto(s)
Pie Equinovaro/complicaciones , Anomalías Congénitas/patología , Peroné/anomalías , Uñas Malformadas/complicaciones , Anciano , Brasil , Niño , Pie Equinovaro/diagnóstico por imagen , Anomalías Congénitas/diagnóstico por imagen , Femenino , Peroné/diagnóstico por imagen , Geografía , Humanos , Masculino , Persona de Mediana Edad , Uñas Malformadas/diagnóstico por imagen , Linaje , Radiografía , Síndrome
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA