Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 228, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956506

RESUMEN

BACKGROUND: Fungi play a key role in several important ecological functions, ranging from organic matter decomposition to symbiotic associations with plants. Moreover, fungi naturally inhabit the human body and can be beneficial when administered as probiotics. In mycology, the internal transcribed spacer (ITS) region was adopted as the universal marker for classifying fungi. Hence, an accurate and robust method for ITS classification is not only desired for the purpose of better diversity estimation, but it can also help us gain a deeper insight into the dynamics of environmental communities and ultimately comprehend whether the abundance of certain species correlate with health and disease. Although many methods have been proposed for taxonomic classification, to the best of our knowledge, none of them fully explore the taxonomic tree hierarchy when building their models. This in turn, leads to lower generalization power and higher risk of committing classification errors. RESULTS: Here we introduce HiTaC, a robust hierarchical machine learning model for accurate ITS classification, which requires a small amount of data for training and can handle imbalanced datasets. HiTaC was thoroughly evaluated with the established TAXXI benchmark and could correctly classify fungal ITS sequences of varying lengths and a range of identity differences between the training and test data. HiTaC outperforms state-of-the-art methods when trained over noisy data, consistently achieving higher F1-score and sensitivity across different taxonomic ranks, improving sensitivity by 6.9 percentage points over top methods in the most noisy dataset available on TAXXI. CONCLUSIONS: HiTaC is publicly available at the Python package index, BIOCONDA and Docker Hub. It is released under the new BSD license, allowing free use in academia and industry. Source code and documentation, which includes installation and usage instructions, are available at https://gitlab.com/dacs-hpi/hitac .


Asunto(s)
Hongos , Aprendizaje Automático , Hongos/genética , Hongos/clasificación , ADN Espaciador Ribosómico/genética , Programas Informáticos
2.
J Biomol Struct Dyn ; 40(20): 10136-10152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34155952

RESUMEN

Pertussis is a highly contagious respiratory disease caused by Bordetella pertussis, a Gram-negative bacterium described over a century ago. Despite broad vaccine coverage and treatment options, the disease is remerging as a public health problem especially in infants and older children. Recent data indicate re-emergence of the disease is related to bacterial resistance to immune defences and decreased vaccine effectiveness, which obviously suggests the need of new effective vaccines and drugs. In an attempt to contribute with solutions to this great challenge, bioinformatics tools were used to genetically comprehend the species of these bacteria and predict new vaccines and drug targets. In fact, approaches were used to analysis genomic plasticity, gene synteny and species similarities between the 20 genomes of Bordetella pertussis already available. Furthermore, it was conducted reverse vaccinology and docking analysis to identify proteins with potential to become vaccine and drug targets, respectively. The analyses showed the 20 genomes belongs to a homogeneous group that has preserved most of the genes over time. Besides that, were found genomics islands and good proteins to be candidates for vaccine and drugs. Taken together, these results suggests new possibilities that may be useful to develop new vaccines and drugs that will help the prevention and treatment strategies of pertussis disease caused by these Bordetella strains. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Bordetella pertussis , Tos Ferina , Niño , Humanos , Adolescente , Bordetella pertussis/genética , Tos Ferina/prevención & control , Tos Ferina/microbiología , Vacuna contra la Tos Ferina/farmacología , Genómica
3.
J Biomol Struct Dyn ; 40(16): 7496-7510, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-33719856

RESUMEN

The genus Rickettsia belongs to the Proteobacteria phylum and these bacteria infect animals and humans causing a range of diseases worldwide. The genus is divided into 4 groups and despite the public health threat and the knowledge accumulated so far, the mandatory intracellular bacteria behaviour and limitation for in vitro culture makes it difficult to create new vaccines and drug targets to these bacteria. In an attempt to overcome these limitations, pan-genomic approaches has used 47 genomes of the genus Rickettsia, in order to describe species similarities and genomics islands. Moreover, we conducted reverse vaccinology and docking analysis aiming the identification of proteins that have great potential to become vaccine and drug targets. We found out that the bacteria of the four Rickettsia groups have a high similarity with each other, with about 90 to 100% of identity. A pathogenicity island and a resistance island were predicted. In addition, 8 proteins were also predicted as strong candidates for vaccine and 9 as candidates for drug targets. The prediction of the proteins leads us to believe in a possibility of prospecting potential drugs or creating a polyvalent vaccine, which could reach most strains of this large group of bacteria.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Rickettsia , Vacunas , Animales , Genoma Bacteriano/genética , Genómica , Humanos , Rickettsia/genética , Factores de Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA