Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35459049

RESUMEN

We address the detection of material defects, which are inside a layered material structure using compressive sensing-based multiple-input and multiple-output (MIMO) wireless radar. Here, strong clutter due to the reflection of the layered structure's surface often makes the detection of the defects challenging. Thus, sophisticated signal separation methods are required for improved defect detection. In many scenarios, the number of defects that we are interested in is limited, and the signaling response of the layered structure can be modeled as a low-rank structure. Therefore, we propose joint rank and sparsity minimization for defect detection. In particular, we propose a non-convex approach based on the iteratively reweighted nuclear and ℓ1-norm (a double-reweighted approach) to obtain a higher accuracy compared to the conventional nuclear norm and ℓ1-norm minimization. To this end, an iterative algorithm is designed to estimate the low-rank and sparse contributions. Further, we propose deep learning-based parameter tuning of the algorithm (i.e., algorithm unfolding) to improve the accuracy and the speed of convergence of the algorithm. Our numerical results show that the proposed approach outperforms the conventional approaches in terms of mean squared errors of the recovered low-rank and sparse components and the speed of convergence.


Asunto(s)
Compresión de Datos , Procesamiento de Imagen Asistido por Computador , Algoritmos , Núcleo Celular , Procesamiento de Imagen Asistido por Computador/métodos , Radar
2.
Sensors (Basel) ; 21(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34696052

RESUMEN

Self-localization based on passive RFID-based has many potential applications. One of the main challenges it faces is the suppression of the reflected signals from unwanted objects (i.e., clutter). Typically, the clutter echoes are much stronger than the backscattered signals of the passive tag landmarks used in such scenarios. Therefore, successful tag detection can be very challenging. We consider two types of tags, namely low-Q and high-Q tags. The high-Q tag features a sparse frequency response, whereas the low-Q tag presents a broad frequency response. Further, the clutter usually showcases a short-lived response. In this work, we propose an iterative algorithm based on a low-rank plus sparse recovery approach (RPCA) to mitigate clutter and retrieve the landmark response. In addition to that, we compare the proposed approach with the well-known time-gating technique. It turns out that RPCA outperforms significantly time-gating for low-Q tags, achieving clutter suppression and tag identification when clutter encroaches on the time-gating window span, whereas it also increases the backscattered power at resonance by approximately 12 dB at 80 cm for high-Q tags. Altogether, RPCA seems a promising approach to improve the identification of passive indoor self-localization tag landmarks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA