Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Development ; 149(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36205097

RESUMEN

Lymphangiogenesis is a dynamic process that involves the directed migration of lymphatic endothelial cells (LECs) to form lymphatic vessels. The molecular mechanisms that underpin lymphatic vessel patterning are not fully elucidated and, to date, no global regulator of lymphatic vessel guidance is known. In this study, we identify the transmembrane cell signalling receptor Plexin D1 (Plxnd1) as a negative regulator of both lymphatic vessel guidance and lymphangiogenesis in zebrafish. plxnd1 is expressed in developing lymphatics and is required for the guidance of both the trunk and facial lymphatic networks. Loss of plxnd1 is associated with misguided intersegmental lymphatic vessel growth and aberrant facial lymphatic branches. Lymphatic guidance in the trunk is mediated, at least in part, by the Plxnd1 ligands, Semaphorin 3AA and Semaphorin 3C. Finally, we show that Plxnd1 normally antagonises Vegfr/Erk signalling to ensure the correct number of facial LECs and that loss of plxnd1 results in facial lymphatic hyperplasia. As a global negative regulator of lymphatic vessel development, the Sema/Plxnd1 signalling pathway is a potential therapeutic target for treating diseases associated with dysregulated lymphatic growth.


Asunto(s)
Vasos Linfáticos , Semaforinas , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Células Endoteliales/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Linfangiogénesis/genética , Vasos Linfáticos/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Proteínas Portadoras/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
2.
EMBO Rep ; 20(5)2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30877134

RESUMEN

Lymphatic vessels are known to be derived from veins; however, recent lineage-tracing experiments propose that specific lymphatic networks may originate from both venous and non-venous sources. Despite this, direct evidence of a non-venous lymphatic progenitor is missing. Here, we show that the zebrafish facial lymphatic network is derived from three distinct progenitor populations that add sequentially to the developing facial lymphatic through a relay-like mechanism. We show that while two facial lymphatic progenitor populations are venous in origin, the third population, termed the ventral aorta lymphangioblast (VA-L), does not sprout from a vessel; instead, it arises from a migratory angioblast cell near the ventral aorta that initially lacks both venous and lymphatic markers, and contributes to the facial lymphatics and the hypobranchial artery. We propose that sequential addition of venous and non-venous progenitors allows the facial lymphatics to form in an area that is relatively devoid of veins. Overall, this study provides conclusive, live imaging-based evidence of a non-venous lymphatic progenitor and demonstrates that the origin and development of lymphatic vessels is context-dependent.


Asunto(s)
Vasos Linfáticos/fisiología , Células Madre/fisiología , Venas/fisiología , Pez Cebra/fisiología , Animales , Movimiento Celular/fisiología , Células Endoteliales/fisiología
3.
Development ; 141(13): 2680-90, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24903752

RESUMEN

Lymphangiogenesis is a dynamic process that involves the sprouting of lymphatic endothelial cells (LECs) from veins to form lymphatic vessels. Vegfr3 signalling, through its ligand Vegfc and the extracellular protein Ccbe1, is essential for the sprouting of LECs to form the trunk lymphatic network. In this study we determined whether Vegfr3, Vegfc and Ccbe1 are also required for development of the facial and intestinal lymphatic networks in the zebrafish embryo. Whereas Vegfr3 and Ccbe1 are required for the development of all lymphatic vessels, Vegfc is dispensable for facial lymphatic sprouting but not for the complete development of the facial lymphatic network. We show that zebrafish vegfd is expressed in the head, genetically interacts with ccbe1 and can rescue the lymphatic defects observed following the loss of vegfc. Finally, whereas knockdown of vegfd has no phenotype, double knockdown of both vegfc and vegfd is required to prevent facial lymphatic sprouting, suggesting that Vegfc is not essential for all lymphatic sprouting and that Vegfd can compensate for loss of Vegfc during lymphatic development in the zebrafish head.


Asunto(s)
Linfangiogénesis/fisiología , Factor C de Crecimiento Endotelial Vascular/deficiencia , Factor D de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proteínas de Unión al Calcio/metabolismo , Cartilla de ADN/genética , Hibridación in Situ , Linfangiogénesis/genética , Microscopía Confocal , Morfolinos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estadísticas no Paramétricas
4.
Development ; 139(13): 2381-91, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22627281

RESUMEN

We have generated novel transgenic lines that brightly mark the lymphatic system of zebrafish using the lyve1 promoter. Facilitated by these new transgenic lines, we generated a map of zebrafish lymphatic development up to 15 days post-fertilisation and discovered three previously uncharacterised lymphatic vessel networks: the facial lymphatics, the lateral lymphatics and the intestinal lymphatics. We show that a facial lymphatic vessel, termed the lateral facial lymphatic, develops through a novel developmental mechanism, which initially involves vessel growth through a single vascular sprout followed by the recruitment of lymphangioblasts to the vascular tip. Unlike the lymphangioblasts that form the thoracic duct, the lymphangioblasts that contribute to the lateral facial lymphatic vessel originate from a number of different blood vessels. Our work highlights the additional complexity of lymphatic vessel development in the zebrafish that may increase its versatility as a model of lymphangiogenesis.


Asunto(s)
Linfangiogénesis , Sistema Linfático/crecimiento & desarrollo , Vasos Linfáticos/fisiología , Proteínas de Transporte Vesicular/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Regiones Promotoras Genéticas , Proteínas de Transporte Vesicular/genética , Proteínas de Pez Cebra/genética
5.
Mol Cancer Ther ; 13(10): 2450-62, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25053822

RESUMEN

The growth of new lymphatic vessels (lymphangiogenesis) in tumors is an integral step in the metastatic spread of tumor cells, first to the sentinel lymph nodes that surround the tumor and then elsewhere in the body. Currently, no selective agents designed to prevent lymphatic vessel growth have been approved for clinical use, and there is an important potential clinical niche for antilymphangiogenic agents. Using a zebrafish phenotype-based chemical screen, we have identified drug compounds, previously approved for human use, that have antilymphatic activity. These include kaempferol, a natural product found in plants; leflunomide, an inhibitor of pyrimidine biosynthesis; and cinnarizine and flunarizine, members of the type IV class of calcium channel antagonists. Antilymphatic activity was confirmed in a murine in vivo lymphangiogenesis Matrigel plug assay, in which kaempferol, leflunomide, and flunarizine prevented lymphatic growth. We show that kaempferol is a novel inhibitor of VEGFR2/3 kinase activity and is able to reduce the density of tumor-associated lymphatic vessels as well as the incidence of lymph node metastases in a metastatic breast cancer xenograft model. However, in this model, kaempferol administration was also associated with tumor deposits in the pancreas and diaphragm, and flunarizine was found to be tumorigenic. Although this screen revealed that zebrafish is a viable platform for the identification and development of mammalian antilymphatic compounds, it also highlights the need for focused secondary screens to ensure appropriate efficacy of hits in a tumor context.


Asunto(s)
Antineoplásicos/farmacología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Linfangiogénesis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Cinarizina/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Femenino , Flunarizina/farmacología , Humanos , Isoxazoles/farmacología , Quempferoles/farmacología , Leflunamida , Metástasis Linfática , Ratones , Ratones Endogámicos C57BL , Neoplasias/irrigación sanguínea , Neoplasias/patología , Distribución Aleatoria , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Pez Cebra
6.
Nat Commun ; 5: 3880, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24852213

RESUMEN

In addition to satisfying the metabolic demands of cells, mitochondrial metabolism helps regulate immune cell function. To date, such cell-intrinsic metabolic-immunologic cross-talk has only been described operating in cells of the immune system. Here we show that epidermal cells utilize fatty acid ß-oxidation to fuel their contribution to the immune response during cutaneous inflammation. By live imaging metabolic and immunological processes within intact zebrafish embryos during cutaneous inflammation, we uncover a mechanism where elevated ß-oxidation-fuelled mitochondria-derived reactive oxygen species within epidermal cells helps guide matrix metalloproteinase-driven leukocyte recruitment. This mechanism requires the activity of a zebrafish homologue of the mammalian mitochondrial enzyme, Immunoresponsive gene 1. This study describes the first example of metabolic reprogramming operating within a non-immune cell type to help control its contribution to the immune response. Targeting of this metabolic-immunologic interface within keratinocytes may prove useful in treating inflammatory dermatoses.


Asunto(s)
Movimiento Celular , Epidermis/patología , Ácidos Grasos/metabolismo , Inflamación/patología , Leucocitos/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Animales , Dermatitis Atópica/patología , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Glucocorticoides/metabolismo , Larva/microbiología , Macrófagos/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Morfolinos/farmacología , Infiltración Neutrófila/efectos de los fármacos , Oxidación-Reducción , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno , Receptores de Glucocorticoides/metabolismo , Salmonelosis Animal/metabolismo , Transducción de Señal , Análisis de Supervivencia , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA