Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 327(4): F581-F590, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088648

RESUMEN

Intrarenal dopamine plays a protective role against the development of diabetic nephropathy during the early stages of the disease. In streptozotocin-induced diabetic mice with renal-specific catechol-O-methyl transferase knockout, intrarenal dopamine was found to suppress glomerular hyperfiltration, reduce oxidative stress and inflammation, and inhibit fibrosis. However, although dopamine activation in streptozotocin-induced diabetic models has been shown to provide renal protection, the role of dopamine in models of naturally induced diabetes mellitus is still unclear. In the present study, we orally administered 10 mg/kg benserazide, a peripheral decarboxylase inhibitor, to spontaneously diabetic Torii rats daily to investigate the activation of the renal dopaminergic system during the progression of diabetic nephropathy. Our findings show that peripheral dopamine decreased urinary 8-iso-prostaglandin F2α and suppressed increases in plasma cystatin C levels. This study demonstrates that a reduction in peripheral dopamine can exacerbate renal dysfunction, even in the early stages of diabetic nephropathy characterized by glomerular hyperfiltration, thereby clarifying the pivotal role of endogenous peripheral dopamine in modulating oxidative stress and kidney performance.NEW & NOTEWORTHY By administering a peripheral decarboxylase inhibitor, we revealed that peripheral dopamine inhibits both the increase in urinary 8-iso-prostaglandin F2α, an oxidative stress marker, and the increase in plasma cystatin C, an early renal dysfunction marker, even in the early stages of diabetic nephropathy characterized by glomerular hyperfiltration. By visualizing renal dopamine precursor distribution, we highlighted the role of endogenous renal dopamine in oxidative stress and renal function following the onset of glomerular hyperfiltration.


Asunto(s)
Cistatina C , Nefropatías Diabéticas , Dopamina , Animales , Dopamina/metabolismo , Dopamina/orina , Nefropatías Diabéticas/metabolismo , Masculino , Cistatina C/sangre , Estrés Oxidativo/efectos de los fármacos , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Ratas , Ratas Endogámicas SHR , Dinoprost/análogos & derivados , Dinoprost/orina , Dinoprost/metabolismo , Tasa de Filtración Glomerular/efectos de los fármacos
2.
Br J Clin Pharmacol ; 90(1): 354-359, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37596710

RESUMEN

Clozapine (CLZ) is extensively used for treatment-resistant schizophrenia (TRS) with caution to avoid serious adverse events such as agranulocytosis and drug-drug interactions (DDIs). In the current report, we present a case of a 35-year-old male non-smoking TRS patient whose steady-state plasma trough concentrations (Ctrough ) of CLZ and its active metabolite, N-desmethylclozapine (NDMC), were significantly increased after initiating oral administration of lemborexant (LEM), a dual orexin receptor antagonist, for the treatment of insomnia. The patient experienced oversedation with sleepiness and fatigue while maintaining high levels of Ctrough of CLZ. The increased concentrations of CLZ returned to normal ranges after the discontinuation of LEM dosing, implying a pharmacokinetic DDI between CLZ and LEM. To gain insight into possible mechanisms, we performed in vitro assays of CYP1A2- and CYP3A4-mediated CLZ metabolism by measuring the formations of NDMC and clozapine N-oxide (CNO). In accordance with previous studies, the incubation of CLZ with each enzyme resulted in the production of both metabolites. LEM had only a weak inhibitory effect on CYP1A2- and CYP3A4-mediated CLZ metabolism. However, the preincubation of LEM with CYP3A4 in the presence of NADPH showed a significant enhancement of inhibitory effects on CLZ metabolism with IC50 values for the formations of CNO and NDMC of 2.8 µM and 4.1 µM, respectively, suggesting that LEM exerts as a potent time-dependent inhibitor for CYP3A4. Taken together, the results of the current study indicate that co-medication of CLZ with LEM may lead to increase in exposure to CLZ and risks of CLZ-related adverse events.


Asunto(s)
Antipsicóticos , Clozapina , Masculino , Humanos , Adulto , Clozapina/efectos adversos , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/metabolismo , Antipsicóticos/efectos adversos , Interacciones Farmacológicas
3.
Br J Clin Pharmacol ; 86(11): 2314-2318, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32320490

RESUMEN

AIMS: The aim of this study was to investigate the effects of a single green tea (GT), administered concomitantly or 1 hour before nadolol intake on nadolol pharmacokinetics. METHODS: In a randomized 3-phase crossover study, 11 healthy volunteers received an oral administration of nadolol with, or 1 hour after preingestion of brewed GT, or with water in a volume of 150 mL. RESULTS: Geometric mean ratio with 90% confidence interval for nadolol AUC0-48 was 0.371 (0.303-0.439) with concomitant GT. In addition, ingestion of GT 1 hour before nadolol administration resulted in a significant reduction of nadolol AUC0-48 with geometric mean ratio of 0.536 (0.406-0.665). There were no differences in time to maximal plasma concentration and renal clearance of nadolol among groups. CONCLUSION: These results suggest that single concomitant ingestion of GT substantially decreases plasma concentrations of nadolol. Moreover, the reduction in nadolol bioavailability could persist for at least 1 hour after drinking a cup of GT.


Asunto(s)
Catequina , Nadolol , Catequina/análisis , Estudios Cruzados , Ingestión de Alimentos , Voluntarios Sanos , Humanos ,
4.
Eur J Clin Pharmacol ; 74(5): 601-609, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29368187

RESUMEN

PURPOSE: The objective of this study is to assess the effects of green tea and its major catechin component, (-)-epigallocatechin gallate (EGCG), on CYP2C9-mediated substrate metabolism in vitro, and the pharmacokinetics of fluvastatin in healthy volunteers. METHODS: The metabolism of diclofenac and fluvastatin in human recombinant CYP2C9 was investigated in the presence of EGCG. In a randomized three-phase crossover study, 11 healthy volunteers ingested a single 20-mg dose of fluvastatin with green tea extract (GTE), containing 150 mg of EGCG, along with water (300 mL), brewed green tea (300 mL), or water (300 mL) after overnight fasting. Plasma concentrations of fluvastatin and EGCG were measured by ultra-performance liquid chromatography with fluorescence detection and a single mass spectrometer. RESULTS: EGCG inhibited diclofenac 4'-hydroxylation and fluvastatin degradation with IC50 of 2.23 and 48.04 µM, respectively. Brewed green tea used in the clinical study also dose-dependently inhibited the metabolism of diclofenac and fluvastatin in vitro. However, no significant effects of GTE and brewed green tea were observed in plasma concentrations of fluvastatin. The geometric mean ratios with 90% CI for area under the plasma concentration-time curve (AUC0-∞) of fluvastatin were 0.993 (0.963-1.024, vs. brewed green tea) and 0.977 (0.935-1.020, vs. GTE). CONCLUSIONS: Although in vitro studies indicated that EGCG and brewed green tea produce significant inhibitory effects on CYP2C9 activity, the concomitant administration of green tea and fluvastatin in healthy volunteers did not influence the pharmacokinetics of fluvastatin.


Asunto(s)
Catequina/análogos & derivados , Citocromo P-450 CYP2C9/metabolismo , Ácidos Grasos Monoinsaturados/farmacocinética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacocinética , Indoles/farmacocinética , , Adulto , Antiinflamatorios no Esteroideos/farmacocinética , Catequina/análisis , Catequina/sangre , Catequina/farmacocinética , Catequina/farmacología , Estudios Cruzados , Diclofenaco/farmacocinética , Ácidos Grasos Monoinsaturados/sangre , Femenino , Fluvastatina , Interacciones Alimento-Droga , Voluntarios Sanos , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/sangre , Indoles/sangre , Masculino , Té/química , Adulto Joven
5.
Eur J Clin Pharmacol ; 74(6): 775-783, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29480324

RESUMEN

PURPOSE: The aim of the present study is to investigate a possible role of a single dose of (-)-epigallocatechin gallate (EGCG), the major catechin in green tea, for the pharmacokinetic interaction between green tea and nadolol in humans. METHODS: In a randomized three-phase crossover study, 13 healthy volunteers received single doses of 30 mg nadolol orally with water (control), or an aqueous solution of EGCG-concentrated green tea extract (GTE) at low or high dose. Plasma concentrations and urinary excretion of nadolol were determined up to 48 h. In addition, blood pressure and pulse rate were monitored. In vitro transport kinetic experiments were performed using human embryonic kidney 293 cells stably expressing organic anion transporting polypeptide (OATP)1A2 to evaluate the inhibitory effect of EGCG on OATP1A2-mediated substrate transport. RESULTS: Single coadministration of low and high dose GTE significantly reduced the plasma concentrations of nadolol. The geometric mean ratios with 90% CI for area under the plasma concentration-time curves from 0 to infinity of nadolol were 0.72 (0.56-0.87) for the low and 0.60 (0.51-0.69) for the high dose. There were no significant differences in Tmax, elimination half-life, and renal clearance between GTE and water phases. No significant changes were observed for blood pressure and pulse rate between phases. EGCG competitively inhibited OATP1A2-mediated uptake of sulphobromophthalein and nadolol with Ki values of 21.6 and 19.4 µM, respectively. CONCLUSIONS: EGCG is suggested to be a key contributor to the interaction of green tea with nadolol. Moreover, even a single coadministration of green tea may significantly affect nadolol pharmacokinetics.


Asunto(s)
Antagonistas Adrenérgicos beta/farmacocinética , Antioxidantes/farmacología , Camellia sinensis , Catequina/análogos & derivados , Nadolol/farmacocinética , Extractos Vegetales/farmacología , Antagonistas Adrenérgicos beta/sangre , Antagonistas Adrenérgicos beta/orina , Adulto , Antioxidantes/análisis , Proteínas Sanguíneas/metabolismo , Catequina/análisis , Catequina/farmacología , Estudios Cruzados , Interacciones Farmacológicas , Femenino , Células HEK293 , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Nadolol/sangre , Nadolol/orina , Transportadores de Anión Orgánico , Extractos Vegetales/análisis , Unión Proteica , Adulto Joven
6.
Mol Pharm ; 13(2): 512-9, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26702643

RESUMEN

Nadolol is a nonmetabolized ß-adrenoceptor antagonist and is a substrate of OATP1A2, but not of OATP2B1. However, other drug transporters involved in translocation of nadolol have not been characterized in detail. We therefore investigated nadolol as a potential substrate of the hepatic uptake transporters OATP1B1, OATP1B3, and OCT1 and of the renal transporters OCT2, MATE1, and MATE2-K expressed in HEK cells. Moreover, the importance of P-glycoprotein (P-gp) for nadolol transport was studied using double transfected MDCK-OCT1-P-gp cells. Nadolol was not transported by OATP1B1 and OATP1B3. In contrast, a significantly higher nadolol accumulation (at 1 and 10 µM) was found in OCT1, OCT2, MATE1, and MATE2-K cells compared to control cells (P < 0.01). Km values for OCT2-, MATE1-, and MATE2-K-mediated nadolol uptake were 122, 531, and 372 µM, respectively. Cimetidine (100 µM, P < 0.01) and trimethoprim (100 µM, P < 0.001) significantly inhibited OCT1-, OCT2-, MATE1-, and MATE2-K-mediated nadolol transport. The P-gp inhibitor zosuquidar significantly reduced basal to apical nadolol transport in monolayers of MDCK-OCT1-P-gp cells. In summary, nadolol is a substrate of the cation transporters OCT1, OCT2, MATE1, MATE2-K, and of P-gp. These data will aid future in vivo studies on potential transporter-mediated drug-drug or drug-food interactions with involvement of nadolol.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Nadolol/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Proteínas de Transporte de Catión Orgánico/metabolismo , Transportador 1 de Catión Orgánico/metabolismo , Antagonistas Adrenérgicos beta/metabolismo , Animales , Perros , Células HEK293 , Humanos , Células de Riñón Canino Madin Darby , Transportador 2 de Cátion Orgánico , Miembro 1B3 de la Familia de los Transportadores de Solutos de Aniones Orgánicos , Especificidad por Sustrato
7.
J Mol Cell Cardiol ; 89(Pt B): 306-13, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26470821

RESUMEN

BACKGROUND: Inflammation is one of major mechanisms contributing to the pathogenesis of myocardial ischemia/reperfusion (I/R) injury. Pentraxin 3 (PTX3), produced in response to inflammatory signals, acts as a humoral arm of the innate immunity. Here we investigated the role of PTX3 produced from bone marrow-derived cells in myocardial I/R injury using PTX3-deficient (PTX3KO) mice. METHODS AND RESULTS: PTX3KO mice and wild-type littermate (WT) mice were lethally irradiated and injected with bone marrow (BM) cells, generating four types of mice (WT(WT-BM), WT(PTX3KO-BM), PTX3KO(WT-BM) and PTX3KO(PTX3KO-BM)). Six weeks after BM transplantation, the myocardial I/R procedure (45 min of left descending coronary artery ligation followed by 48 h of reperfusion) was performed. Infarct size was greater in WT and PTX3KO mice with BM from PTX3KO donor (WT(PTX3KO-BM) and PTX3KO(PTX3KO-BM)) compared with WT and PTX3KO mice with BM from WT donor (WT(WT-BM) and PTX3KO(WT-BM)). Localization of PTX3 was observed in neutrophils and macrophages in WT and PTX3KO mice with BM from WT donor (WT(WT-BM) and PTX3KO(WT-BM)), while only in endothelial cells in WT mice with BM from PTX3KO donor (WT(PTX3KO-BM)). Infiltration of neutrophils and generation of reactive oxygen species (ROS) at ischemic border zones were greater in PTX3KO mice with BM from PTX3KO donor (PTX3KO(PTX3KO-BM)) than PTX3KO mice with BM from WT donor (PTX3KO(WT-BM)). Plasma levels and cardiac expressions of interleukin-6 were higher in PTX3KO mice with BM from PTX3KO donor (PTX3KO(PTX3KO-BM)) than PTX3KO mice with BM from WT donor (PTX3KO(WT-BM)). However, no significant differences in infarct size, infiltration of neutrophils, generation of ROS and plasma and cardiac levels of interleukin-6 were observed between WT and PTX3KO mice with BM from WT donor and between WT and PTX3KO mice with BM from PTX3KO donor. These results indicated that the lack of PTX3 produced from BM-derived cells, and not from cardiac resident cells, exacerbated myocardial injury after I/R. CONCLUSION: PTX3 produced from bone marrow-derived cells plays a crucial role in cardiac protection against myocardial I/R injury by attenuating infiltration of neutrophils, generation of ROS and inflammatory cytokine.


Asunto(s)
Células de la Médula Ósea/metabolismo , Proteína C-Reactiva/metabolismo , Cardiotónicos/metabolismo , Daño por Reperfusión Miocárdica/patología , Componente Amiloide P Sérico/metabolismo , Animales , Células Endoteliales/metabolismo , Interleucina-6/sangre , Interleucina-6/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Infiltración Neutrófila , Neutrófilos/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
8.
Front Endocrinol (Lausanne) ; 15: 1380779, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919481

RESUMEN

Objective: Aromatherapy is a holistic healing method to promote health and well-being by using natural plant extracts. However, its precise mechanism of action and influence on the endocrine system remains unclear. Since recent studies reported that a neuropeptide, oxytocin, can attenuate anxiety, we hypothesized that if oxytocin secretion is promoted through aromatherapy, it may improve mood and anxiety. The present study is aimed to investigate the relationship between oxytocin and the effects of aromatherapy with lavender oil on anxiety level, by measuring salivary oxytocin levels in healthy men and women. Methods: We conducted a randomized open crossover trial in 15 men and 10 women. Each participant received a placebo intervention (control group) and aromatherapy with lavender oil (aromatherapy group). For the aromatherapy group, each participant spent a 30-min session in a room with diffused lavender essential oil, followed by a 10-min hand massage using a carrier oil containing lavender oil. Anxiety was assessed using the State-Trait Anxiety Inventory (STAI) before the intervention, 30-min after the start of intervention, and after hand massage, in both groups. Saliva samples were collected at the same time points of the STAI. Results: In women, either aromatherapy or hand massage was associated with a reduction in anxiety levels, independently. Moreover, salivary oxytocin levels were increased after aromatherapy. On the other hand, in men, anxiety levels were decreased after aromatherapy, as well as after hand massage, regardless of the use of lavender oil. However, there were no significant differences in changes of salivary oxytocin levels between the control and aromatherapy groups during the intervention period. Interestingly, there was a positive correlation between anxiety levels and salivary oxytocin levels before the intervention, but a negative correlation was observed after hand massage with lavender oil. Conclusion: The results of the present study indicate that in women, aromatherapy with lavender oil attenuated anxiety with increase in oxytocin level in women, whereas in men, there was no clear relationship of aromatherapy with anxiety or oxytocin levels but, there was a change in correlation between anxiety and oxytocin. The results of the present study suggest that the effect of aromatherapy can vary depending on sex.


Asunto(s)
Ansiedad , Aromaterapia , Estudios Cruzados , Lavandula , Aceites Volátiles , Oxitocina , Aceites de Plantas , Saliva , Humanos , Oxitocina/metabolismo , Aromaterapia/métodos , Femenino , Masculino , Saliva/química , Saliva/metabolismo , Ansiedad/terapia , Ansiedad/metabolismo , Adulto , Aceites Volátiles/uso terapéutico , Lavandula/química , Adulto Joven , Caracteres Sexuales
9.
Front Endocrinol (Lausanne) ; 15: 1387964, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742193

RESUMEN

The high prevalence of obesity has become a pressing global public health problem and there exists a strong association between increased BMI and mortality at a BMI of 25 kg/m2 or higher. The prevalence of obesity is higher among middle-aged adults than among younger groups and the combination of aging and obesity exacerbate systemic inflammation. Increased inflammatory cytokines such as interleukin 6 and tumor necrosis factor alpha (TNFα) are hallmarks of obesity, and promote the secretion of hepatic C-reactive protein (CRP) which further induces systematic inflammation. The neuropeptide oxytocin has been shown to have anti-obesity and anti-inflammation effects, and also suppress sweet-tasting carbohydrate consumption in mammals. Previously, we have shown that the Japanese herbal medicine Kamikihito (KKT), which is used to treat neuropsychological stress disorders in Japan, functions as an oxytocin receptors agonist. In the present study, we further investigated the effect of KKT on body weight (BW), food intake, inflammation, and sweet preferences in middle-aged obese mice. KKT oral administration for 12 days decreased the expression of pro-inflammatory cytokines in the liver, and the plasma CRP and TNFα levels in obese mice. The effect of KKT administration was found to be different between male and female mice. In the absence of sucrose, KKT administration decreased food intake only in male mice. However, while having access to a 30% sucrose solution, both BW and food intake was decreased by KKT administration in male and female mice; but sucrose intake was decreased in female mice alone. In addition, KKT administration decreased sucrose intake in oxytocin deficient lean mice, but not in the WT lean mice. The present study demonstrates that KKT ameliorates chronic inflammation, which is strongly associated with aging and obesity, and decreases food intake in male mice as well as sucrose intake in female mice; in an oxytocin receptor dependent manner.


Asunto(s)
Dieta Alta en Grasa , Inflamación , Medicina Kampo , Obesidad , Receptores de Oxitocina , Animales , Femenino , Masculino , Ratones , Peso Corporal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Preferencias Alimentarias/efectos de los fármacos , Inflamación/metabolismo , Ratones Endogámicos C57BL , Obesidad/metabolismo , Obesidad/tratamiento farmacológico , Oxitocina/farmacología , Sacarosa/administración & dosificación , Japón , Receptores de Oxitocina/agonistas
11.
Biomed Chromatogr ; 27(1): 1-6, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22473820

RESUMEN

A rapid and quantitative analytical method for the simultaneous determination of green tea catechins using ultra-performance liquid chromatography/electrospray ionization-mass spectrometry was developed. Total analytical run time was 3.5 min for the detection of (-)-epicatechin (EC), (-)-epicatechin-3-O-gallate (ECG), (-)-epigallocatechin (EGC), (-)-epigallocatechin-3-O-gallate (EGCG) and myricetin as the internal standard (IS) in rat plasma. The calibration curves were linear over the range of 10-5000 ng/mL for all the catechins. The inter- and intra-day precision (relative standard deviation) and accuracy (percentage deviation) of the method were both lower than 10%. The average extraction recoveries in plasma ranged from 68.5 to 86.5%, and the lower limits of quantification of EC, EGC, ECG and EGCG were 10 ng/mL with a signal-to-noise ratio of >10. The assay developed was successfully applied to a pharmacokinetic study of catechins following intravenous and intragastric administrations of green tea extract in rats. Plasma concentrations of four catechins were detected up to 5-24 h after administration, and the pharmacokinetic parameters of catechins were in agreement with previous studies. From these findings, taken together with the high productivity and precision, the developed method could be a reliable and reproducible tool for the evaluation of pharmacokinetic properties of catechins.


Asunto(s)
Catequina/análogos & derivados , Catequina/sangre , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Té/química , Animales , Catequina/química , Catequina/farmacocinética , Femenino , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Pharmaceutics ; 15(11)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-38004541

RESUMEN

In this study, we developed stabilized astaxanthin (AX) nanoparticles (sNP/AX) to improve the physicochemical properties, oral bioavailability, and hepatoprotection of AX. A flash nanoprecipitation technique was used with a multi-inlet vortex mixer to prepare the sNP/AX. Vitamins E (VE) and C (VC) were used as co-stabilizers with poloxamer 407 as a stabilizer to inhibit the oxidative degradation of AX during sNP/AX formation and storage. VC stabilized AX in the aqueous phase during the preparation, whereas VE markedly improved the storage stability of sNP/AX, as evidenced by the AX contents remaining at 94 and 81% after 12 weeks of storage at 4 °C and 25 °C, respectively. The mean sNP/AX diameter was 215 nm, which resulted in higher AX release properties than those of crystalline AX. Rats, orally administered sNP/AX (33.2 mg AX/kg), exhibited higher systemic exposure to AX, whereas oral absorption in the crystalline AX group was negligible. In the rat hepatic injury model, oral pretreatment with sNP/AX (33.2 mg AX/kg) markedly attenuated hepatic damage, as shown by the histopathological analysis and reduced levels of plasma biomarkers for hepatic injury. These findings suggest that strategically including antioxidative additives in the sNP/AX has the potential to improve the physicochemical and nutraceutical properties of AX.

13.
Clin Pharmacol Ther ; 112(3): 627-634, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678032

RESUMEN

Green tea (GT) alters the disposition of a number of drugs, such as nadolol and lisinopril. However, it is unknown whether GT affects disposition of hydrophilic anti-allergic drugs. The purpose of this study was to investigate whether pharmacokinetics of fexofenadine and pseudoephedrine are affected by catechins, major GT components. A randomized, open, 2-phase crossover study was conducted in 10 healthy Japanese volunteers. After overnight fasting, subjects were simultaneously administered fexofenadine (60 mg) and pseudoephedrine (120 mg) with an aqueous solution of green tea extract (GTE) containing (-)-epigallocatechin gallate (EGCG) of ~ 300 mg or water (control). In vitro transport assays were performed using HEK293 cells stably expressing organic anion transporting polypeptide (OATP)1A2 to evaluate the inhibitory effect of EGCG on OATP1A2-mediated fexofenadine transport. In the GTE phase, the area under the plasma concentration-time curve and the amount excreted unchanged into urine for 24 hours of fexofenadine were significantly decreased by 70% (P < 0.001) and 67% (P < 0.001), respectively, compared with control. There were no differences in time to maximum plasma concentration and the elimination half-life of fexofenadine between phases. Fexofenadine was confirmed to be a substrate of OATP1A2, and EGCG (100 and 1,000 µM) and GTE (0.1 and 1 mg/mL) inhibited OATP1A2-mediated uptake of fexofenadine. On the contrary, the concomitant administration of GTE did not influence the pharmacokinetics of pseudoephedrine. These results suggest that intake of GT may result in a markedly reduced exposure of fexofenadine, but not of pseudoephedrine, putatively by inhibiting OATP1A2-mediated intestinal absorption.


Asunto(s)
Catequina , Seudoefedrina , Antioxidantes , Catequina/análisis , Catequina/farmacocinética , Estudios Cruzados , Células HEK293 , Voluntarios Sanos , Humanos , Preparaciones Farmacéuticas , Extractos Vegetales/farmacología , , Terfenadina/análogos & derivados
14.
Front Pharmacol ; 13: 1031906, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36588738

RESUMEN

Burn injury is the leading cause of death and disability worldwide and places a tremendous economic burden on society. Systemic inflammatory responses induced by thermal burn injury can cause muscle wasting, a severe involuntary loss of skeletal muscle that adversely affects the survival and functional outcomes of these patients. Currently, no pharmacological interventions are available for the treatment of thermal burn-induced skeletal muscle wasting. Elevated levels of inflammatory cytokines, such as interleukin-6 (IL-6), are important hallmarks of severe burn injury. The levels of signal transducer and activator of transcription 3 (STAT3)-a downstream component of IL-6 inflammatory signaling-are elevated with muscle wasting in various pro-catabolic conditions, and STAT3 has been implicated in the regulation of skeletal muscle atrophy. Here, we tested the effects of the STAT3-specific signaling inhibitor C188-9 on thermal burn injury-induced skeletal muscle wasting in vivo and on C2C12 myotube atrophy in vitro after the administration of plasma from burn model mice. In mice, thermal burn injury severity dependently increased IL-6 in the plasma and tibialis anterior muscles and activated the STAT3 (increased ratio of phospho-STAT3/STAT3) and ubiquitin-proteasome proteolytic pathways (increased Atrogin-1/MAFbx and MuRF1). These effects resulted in skeletal muscle atrophy and reduced grip strength. In murine C2C12 myotubes, plasma from burn mice activated the same inflammatory and proteolytic pathways, leading to myotube atrophy. In mice with burn injury, the intraperitoneal injection of C188-9 (50 mg/kg) reduced activation of the STAT3 and ubiquitin-proteasome proteolytic pathways, reversed skeletal muscle atrophy, and increased grip strength. Similarly, pretreatment of murine C2C12 myotubes with C188-9 (10 µM) reduced activation of the same inflammatory and proteolytic pathways, and ameliorated myotube atrophy induced by plasma taken from burn model mice. Collectively, these results indicate that pharmacological inhibition of STAT3 signaling may be a novel therapeutic strategy for thermal burn-induced skeletal muscle wasting.

15.
J Clin Pharmacol ; 61(6): 799-805, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33387374

RESUMEN

Nadolol is a hydrophilic and nonselective ß-adrenoceptor blocker with a bioavailability of 30%, relatively longer half-life, negligible metabolism, and predominant renal excretion. Previous studies have reported that nadolol is a substrate of P-glycoprotein, and the coadministration with itraconazole, a typical P-glycoprotein inhibitor, results in elevated plasma concentrations and cumulative urinary excretion of nadolol. In this study, we assessed whether measurements of urinary-excreted nadolol can be an alternative method of plasma pharmacokinetics for P-glycoprotein-mediated drug interactions in humans. We reanalyzed the pooled data set of plasma concentration and urinary excretion of nadolol from our previous clinical studies in a total of 32 healthy Japanese adults. The area under the plasma concentration-time curve from 0 to infinity (AUC0-∞ ) of nadolol in individual subjects was significantly correlated with the maximum plasma concentration (r = 0.80, P < .01) and the cumulative amount excreted into urine (Ae ) at 4 (r = 0.51, P = .01), 8 (r = 0.63, P < .01), 24 (r = 0.75, P < .01), and 48 (r = 0.77, P < .01) hours. Significant correlations were also observed between the AUC and Ae during the same respective periods. In the drug interactions of nadolol with itraconazole, rifampicin, a well-known P-glycoprotein inducer, or grapefruit juice, there were significant correlations between the differences in AUC0-48 and those in Ae, 0-48 from the controls in individual subjects. These results suggest that the measurements of urinary excretion of nadolol can be employed as a sensitive and reliable alternative to plasma pharmacokinetics for the evaluation of P-glycoprotein-mediated drug interactions.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Citrus paradisi , Itraconazol/farmacología , Nadolol/farmacocinética , Antagonistas Adrenérgicos beta/farmacocinética , Adulto , Área Bajo la Curva , Interacciones Farmacológicas , Femenino , Semivida , Humanos , Masculino , Persona de Mediana Edad , Nadolol/sangre , Nadolol/orina , Rifampin/farmacología , Adulto Joven
16.
J Food Drug Anal ; 29(4): 653-675, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35649140

RESUMEN

Oxytocin (Oxt) is known to regulate social communication, stress and body weight. The activation of Oxt receptors (OTR) has clinical potential to abate stress disorders and metabolic syndrome. Kamikihito (KKT) is a traditional Japanese medicine used to treat psychological stress-related disorders. We investigated the effects of KKT, its ingredients and chemical components on Oxt neurons and OTR. C-Fos expression was examined after oral and peripheral administration of KKT in rats. Electrophysiological change of Oxt neurons and Oxt release upon application of KKT were measured in rat brain slice. The direct effect of KKT, its ingredients and its chemical components were examined by cytosolic Ca2+([Ca2+]i) measurement in Oxt neurons and OTR-expressing HEK293 cells. Both intraperitoneal and oral administration of KKT in rats induced c-Fos expression in neurons of the paraventricular nucleus (PVN) including Oxt neurons. Application of KKT induced activation of Oxt neurons and Oxt release. KKT increased [Ca2+]i in OTR-expressing HEK293 cells, and failed to activate with OTR antagonist. KKT-induced PVN Oxt neuron activation was also attenuated by OTR antagonist. Seven chemical components (rutin, ursolic acid, (Z )-butylidenephtalide, p-cymene, senkunolide, [6]-shogaol, [8]-shogaol) of three ingredients (Zizyphi Fructus, Angelicae Acutilobae Radix, Zingiberis Rhizoma) from KKT had potential to activate OTR. KKT can directly activate PVN Oxt neurons by interacting with OTR. The interaction of seven chemical components from KKT may contribute to activate OTR. Effect of KKT on Oxt neurons and OTR may contribute to the treatment of Oxt related disorders.


Asunto(s)
Oxitocina , Receptores de Oxitocina , Animales , Células HEK293 , Humanos , Japón , Medicina Tradicional de Asia Oriental , Oxitocina/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Receptores de Oxitocina/genética , Receptores de Oxitocina/metabolismo
17.
Clin Transl Sci ; 14(2): 476-480, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33048477

RESUMEN

Lisinopril, a highly hydrophilic long-acting angiotensin-converting enzyme inhibitor, is frequently prescribed for the treatment of hypertension and congestive heart failure. Green tea consumption may reduce the risk of cardiovascular outcomes and total mortality, whereas green tea or its catechin components has been reported to decrease plasma concentrations of a hydrophilic ß blocker, nadolol, in humans. The aim of this study was to evaluate possible effects of green tea extract (GTE) on the lisinopril pharmacokinetics. In an open-label, randomized, single-center, 2-phase crossover study, 10 healthy subjects ingested 200 mL of an aqueous solution of GTE containing ~ 300 mg of (-)-epigallocatechin gallate, a major catechin component in green tea, or water (control) when receiving 10 mg of lisinopril after overnight fasting. The geometric mean ratio (GTE/control) for maximum plasma concentration and the area under the plasma concentration-time curve of lisinopril were 0.289 (90% confidence interval (CI) 0.226-0.352) and 0.337 (90% CI 0.269-0.405), respectively. In contrast, there were no significant differences in time to reach maximum lisinopril concentration (6 hours in both phases) and renal clearance of lisinopril (57.7 mL/minute in control vs. 56.9 mL/minute in GTE). These results suggest that the extent of intestinal absorption of lisinopril was significantly impaired in the presence of GTE, whereas it had no major effect on the absorption rate and renal excretion of lisinopril. Concomitant use of lisinopril and green tea may decrease oral exposure to lisinopril, and therefore result in reduced therapeutic efficacy.


Asunto(s)
Catequina/análogos & derivados , Interacciones Alimento-Droga , Lisinopril/farmacocinética , Té/química , Administración Oral , Adulto , Catequina/administración & dosificación , Catequina/farmacocinética , Estudios Cruzados , Ayuno , Femenino , Voluntarios Sanos , Humanos , Absorción Intestinal , Lisinopril/administración & dosificación , Masculino , Adulto Joven
18.
Clin Exp Pharmacol Physiol ; 37(3): 290-5, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19719748

RESUMEN

1. Midazolam, a short-acting benzodiazepine, has been considered a probe for estimating hepatic and intestinal cytochrome P450 (CYP) 3A activity in humans. The aim of the present study was to evaluate the pharmacokinetics and pharmacodynamics of midazolam administered intravenously (i.v.) and orally (p.o.) at relatively low doses to healthy volunteers. 2. The present study was an open-label, single-sequence trial in three phases distinguished by differing doses of midazolam. Plasma concentrations of midazolam and its metabolites, as well as pharmacodynamic parameters, were measured simultaneously after administration of 5, 15 and 30 microg/kg, i.v., midazolam and 15, 50 and 100 microg/kg, p.o., midazolam. 3. The area under the concentration-time curve (AUC) of midazolam was significantly correlated with dose after both i.v. and oral administration (both P < 0.001). The AUC(0-6) of midazolam after oral administration was also well correlated with the area under the effect curve for peak saccadic velocity (PSV; P < 0.018), postural sway area (PSA; P < 0.069) and mental sedation as measured on a visual analogue scale (VAS; P < 0.054), but not for critical flicker fusion. 4. The present study has shown that the pharmacokinetics of midazolam at relatively low doses are linear for both intravenous and oral dosing regimens. In addition, PSV, PSA and VAS may be useful for the simultaneous evaluation of the pharmacokinetics and pharmacodynamics of midazolam at subtherapeutic doses.


Asunto(s)
Midazolam/administración & dosificación , Midazolam/farmacocinética , Administración Oral , Adolescente , Adulto , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Humanos , Inyecciones Intravenosas , Masculino , Midazolam/sangre , Adulto Joven
19.
Naunyn Schmiedebergs Arch Pharmacol ; 377(4-6): 579-90, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18172612

RESUMEN

Vasoactive intestinal peptide (VIP) has been identified as one of major peptide transmitters in the central and peripheral nervous systems, being involved in a wide range of biological functions. The general physiologic effects of VIP include vasodilation, anti-inflammatory actions, cell proliferation, hormonal secretion, regulation of gastric motility, and smooth muscle relaxation; therefore, VIP has emerged as a promising drug candidate for the treatment of several diseases. A number of clinical applications of VIP or its derivatives have been developed; however, VIP-based drugs are not yet in clinical use, possibly because of mainly two serious problems: (1) poor metabolic stability and (2) poor penetration to the desired site of action. To overcome these shortcomings, the development of efficacious VIP analogues and several drug delivery systems has been attempted on the basis of numerous structure-activity relationships (SAR) studies and pharmacological experiments. Combination of the use of potent VIP analogues and an appropriate drug delivery system might be advantageous for the VIP-based therapy. We review in this paper SAR studies of VIP for the identification of potent therapeutic agents, describe the development of selective and/or metabolically stable VIP receptor agonists/antagonists, and discuss the potential application for clinical treatment using drug delivery systems.


Asunto(s)
Sistemas de Liberación de Medicamentos , Receptores de Péptido Intestinal Vasoactivo/agonistas , Péptido Intestinal Vasoactivo/análogos & derivados , Animales , Humanos , Receptores de Péptido Intestinal Vasoactivo/antagonistas & inhibidores , Receptores de Péptido Intestinal Vasoactivo/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Péptido Intestinal Vasoactivo/química , Péptido Intestinal Vasoactivo/farmacocinética
20.
Naunyn Schmiedebergs Arch Pharmacol ; 377(4-6): 629-36, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18157519

RESUMEN

Animal and in vitro studies suggest that ursodeoxycholic acid (UDCA) can induce cytochrome P450 3A (CYP3A) expression and enhance its activities. On the other hand, Becquemont et al. demonstrated that UDCA had no influence on intestinal CYP3A activities. The aim of this study was to investigate the effects of UDCA on the intestinal and hepatic CYP3A activities by administration of midazolam (MDZ), as a specific probe for CYP3A activity, in humans. This was a randomized, open-label, crossover study with two phases in 14 healthy volunteers. The volunteers received UDCA (300 mg/day) or placebo orally for 9 days. The pharmacokinetics and pharmacodynamics of intravenous MDZ (5 microg/kg) and oral MDZ (15 microg/kg) were assessed on days 8 and 9, respectively. The pharmacodynamics of MDZ was estimated by measuring peak saccadic velocity, postural away length, critical fusion flicker frequency, and visual analogue scale. UDCA did not affect the pharmacokinetic and pharmacodynamic parameters of intravenous and oral MDZ administrations. Our study suggests that the clinical dosage of UDCA could not affect both hepatic and intestinal CYP3A activities and that the drug interaction between UDCA and substrates for CYP3A is unlikely in humans.


Asunto(s)
Colagogos y Coleréticos/farmacología , Citocromo P-450 CYP3A/efectos de los fármacos , Midazolam/farmacocinética , Ácido Ursodesoxicólico/farmacología , Administración Oral , Adulto , Ansiolíticos/administración & dosificación , Ansiolíticos/farmacocinética , Ansiolíticos/farmacología , Estudios Cruzados , Citocromo P-450 CYP3A/metabolismo , Interacciones Farmacológicas , Femenino , Humanos , Inyecciones Intravenosas , Masculino , Midazolam/administración & dosificación , Midazolam/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA