Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13673, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871825

RESUMEN

From the useless municipal solid waste (MSW) ashes, CeO2, Gd2O3 and CeO2 + Gd2O3 doped borosilicate glasses were organized via melting-quenching procedure. Various optical, structural, physical and radiation shielding parameters were examined towards the influence of 100 kGy of γ-radiation. UV-visible NIR spectra revealed UV peaks at 351, 348 and 370 nm corresponding to the trivalent states of Ce3+ and Gd3+ ions, while, photoluminescence (PL) spectra displayed asymmetric broad excitations of Ce3+ and Gd3+ ions due to 4f → 5d transitions, and emission intense bands at 412, 434, and 417 nm. CIE chromaticity shows that Gd3+ ions increase the luminescence of Ce3+. FTIR absorption bands revealed an overlapping between tetrahedral groups of silicate (SiO4), with trigonal (BO3) and tetrahedral (BO4) units of borate. The influence of 100 kGy obtains quite reduction in UV-visible NIR and PL peaks, large stability in FTIR and ESR spectra, and stability of thermal expansion coefficient (CTE) as well. The whole data revealed optical, structural and physical stability of glasses after irradiation besides an enhancement in microhardness owing to more structural compactness and high bonding connectivity. Radiation shielding parameters from Phy-X/PSD program showed higher values of mass (MAC) and linear attenuation coefficients (LAC), and effective atomic number (Zeff) in the order of; glass Ce+Gd > glass Ce > glass Gd. Ce + Gd doped glass revealed also the lowest half value layer (HVL) comparing to other shielding commercial concretes. The study recommends the beneficial and economical use of the useless MSW ash to produce CeO2 and/or Gd2O3 borosilicate glasses with hopeful radiation shielding features.

2.
Mater Today Bio ; 25: 100999, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38379933

RESUMEN

Despite the remarkable progress in the generation of recombinant elastin-like (ELR) hydrogels, further improvements are still required to enhance and control their viscoelasticity, as well as limit the use of expensive chemical reagents, time-consuming processes and several purification steps. To alleviate this issue, the reactivity of carboxylic groups from glutamic (E) acid distributed along the hydrophilic block of an amphiphilic ELR (coded as E50I60) with amine groups has been studied through a one-pot amidation reaction in aqueous solutions, for the first time. By means of this approach, immediate conjugation of E50I60 with molecules containing amine groups has been performed with a high yield, as demonstrated by the 1H NMR and MALDI-TOF spectroscopies. This has resulted in the preparation of viscoelastic irreversible hydrogels through the "in-situ" cross-linking of E50I60 with another ELR (coded as VKV24) containing amine groups from lysines (K). The rheology analysis demonstrated that the gelation process takes place following a dual mechanism dependent on the ELR concentration: physical cross-linking of I60 block through the hydrophobic interactions, and covalent cross-linking of E50I60 with VKV24 through the amidation reaction. While the chemical network formed between the hydrophilic E50 block and VKV24 ELR preserves the elasticity of ELR hydrogels, the self-assembly of the I60 block through the hydrophobic interactions provides a tunable physical network. The presented investigation serves as a basis for generating ELR hydrogels with tunable viscoelastic properties promising for tissue regeneration, through an ''in-situ", rapid, scalable, economically and feasible one-pot method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA