Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(16): e202218911, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36760211

RESUMEN

The use of thermally activated delayed fluorescence (TADF) emitters and emitters that show preferential horizontal orientation of their transition dipole moment (TDM) are two emerging strategies to enhance the efficiency of OLEDs. We present the first example of a liquid crystalline multi-resonance TADF (MR-TADF) emitter, DiKTa-LC. The compound possesses a nematic liquid crystalline phase between 80 °C and 110 °C. Importantly, the TDM of the spin-coated film shows preferential horizontal orientation, with an anisotropy factor, a, of 0.28, which is preserved in doped poly(vinylcarbazole) films. Green-emitting (λEL =492 nm) solution-processed OLEDs based on DiKTa-LC showed an EQEmax of 13.6 %. We thus demonstrate for the first time how self-assembly of a liquid crystalline TADF emitter can lead to the so-far elusive control of the orientation of the transition dipole in solution-processed films, which will be of relevance for high-performance solution-processed OLEDs.

2.
J Chem Phys ; 153(20): 201104, 2020 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-33261478

RESUMEN

Strong light-matter coupling leads to the formation of mixed exciton-polariton states, allowing for a rigorous manipulation of the absorption and emission of excitonic materials. Here, we demonstrate the realization of this promising concept in organic photodetectors. By hybridizing the E11 exciton of semiconducting (6,5) single-walled carbon nanotubes (SWNTs) with near-infrared cavity photons, we create spectrally tunable polariton states within a photodiode. In turn, we are able to red-shift the detection peak that coincides with the lower polariton band. Our photodiodes comprise a metal cavity to mediate strong coupling between light and SWNTs and utilize P3HT and PC70BM as the electron donor and acceptor, respectively. The diodes are formed either via mixing of SWNTs, P3HT, and PC70BM to create a bulk heterojunction or by sequential processing of layers to form flat heterojunctions. The resulting near-infrared sensors show tunable, efficient exciton harvesting in an application-relevant wavelength range between 1000 nm and 1300 nm, with optical simulations showing a possible extension beyond 1500 nm.

3.
ACS Photonics ; 11(5): 1844-1850, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38766499

RESUMEN

Polariton organic light-emitting diodes (POLEDs) use strong light-matter coupling as an additional degree of freedom to tailor device characteristics, thus making them ideal candidates for many applications, such as room temperature laser diodes and high-color purity displays. However, achieving efficient formation of and emission from exciton-polaritons in an electrically driven device remains challenging due to the need for strong absorption, which often induces significant nonradiative recombination. Here, we investigate a novel POLED architecture to achieve polariton formation and high-brightness light emission. We utilize the blue-fluorescent emitter material 4,4'-Bis(4-(9H-carbazol-9-yl)styryl)biphenyl (BSBCz), which exhibits strong absorption and a highly horizontal transition-dipole orientation as well as a high photoluminescence quantum efficiency, even at high doping concentrations. We achieve a peak luminance of over 20,000 cd/m2 and external quantum efficiencies of more than 2%. To the best of our knowledge, these values represent the highest reported so far for electrically driven polariton emission from an organic semiconductor emitting in the blue region of the spectrum. Our work therefore paves the way for a new generation of efficient and powerful optoelectronic devices based on POLEDs.

4.
Sci Adv ; 10(10): eadm7613, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446883

RESUMEN

Compact wireless light sources are a fundamental building block for applications ranging from wireless displays to optical implants. However, their realization remains challenging because of constraints in miniaturization and the integration of power harvesting and light-emission technologies. Here, we introduce a strategy for a compact wirelessly powered light-source that consists of a magnetoelectric transducer serving as power source and substrate and an antiparallel pair of custom-designed organic light-emitting diodes. The devices operate at low-frequency ac magnetic fields (~100 kHz), which has the added benefit of allowing operation multiple centimeters deep inside watery environments. By tuning the device resonance frequency, it is possible to separately address multiple devices, e.g., to produce light of distinct colors, to address individual display pixels, or for clustered operation. By simultaneously offering small size, individual addressing, and compatibility with challenging environments, our devices pave the way for a multitude of applications in wireless displays, deep tissue treatment, sensing, and imaging.

5.
Nat Commun ; 14(1): 6126, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37779108

RESUMEN

The orientation of luminescent molecules in organic light-emitting diodes strongly influences device performance. However, our understanding of the factors controlling emitter orientation is limited as current measurements only provide ensemble-averaged orientation values. Here, we use single-molecule imaging to measure the transition dipole orientation of individual emitter molecules in a state-of-the-art thermally evaporated host and thereby obtain complete orientation distributions of the hyperfluorescence-terminal emitter C545T. We achieve this by realizing ultra-low doping concentrations (10-6 wt%) of C545T and minimising background levels to reliably measure its photoluminescence. This approach yields the orientation distributions of >1000 individual emitter molecules in a system relevant to vacuum-processed devices. Analysis of solution- and vacuum-processed systems reveals that the orientation distributions strongly depend on the nanoscale environment of the emitter. This work opens the door to attaining unprecedented information on the factors that determine emitter orientation in current and future material systems for organic light-emitting devices.

6.
Nat Commun ; 11(1): 6250, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33288769

RESUMEN

Despite widespread interest, ultrathin and highly flexible light-emitting devices that can be seamlessly integrated and used for flexible displays, wearables, and as bioimplants remain elusive. Organic light-emitting diodes (OLEDs) with µm-scale thickness and exceptional flexibility have been demonstrated but show insufficient stability in air and moist environments due to a lack of suitable encapsulation barriers. Here, we demonstrate an efficient and stable OLED with a total thickness of ≈ 12 µm that can be fully immersed in water or cell nutrient media for weeks without suffering substantial degradation. The active layers of the device are embedded between conformal barriers formed by alternating layers of parylene-C and metal oxides that are deposited through a low temperature chemical vapour process. These barriers also confer stability of the OLED to repeated bending and to extensive postprocessing, e.g. via reactive gas plasmas, organic solvents, and photolithography. This unprecedented robustness opens up a wide range of novel possibilities for ultrathin OLEDs.

7.
Nat Commun ; 10(1): 3706, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31420555

RESUMEN

Strong light-matter coupling can re-arrange the exciton energies in organic semiconductors. Here, we exploit strong coupling by embedding a fullerene-free organic solar cell (OSC) photo-active layer into an optical microcavity, leading to the formation of polariton peaks and a red-shift of the optical gap. At the same time, the open-circuit voltage of the device remains unaffected. This leads to reduced photon energy losses for the low-energy polaritons and a steepening of the absorption edge. While strong coupling reduces the optical gap, the energy of the charge-transfer state is not affected for large driving force donor-acceptor systems. Interestingly, this implies that strong coupling can be exploited in OSCs to reduce the driving force for electron transfer, without chemical or microstructural modifications of the photo-active layer. Our work demonstrates that the processes determining voltage losses in OSCs can now be tuned, and reduced to unprecedented values, simply by manipulating the device architecture.

8.
Adv Mater ; 31(42): e1903599, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31486161

RESUMEN

Fluorescence imaging is an indispensable tool in biology, with applications ranging from single-cell to whole-animal studies and with live mapping of neuronal activity currently receiving particular attention. To enable fluorescence imaging at cellular scale in freely moving animals, miniaturized microscopes and lensless imagers are developed that can be implanted in a minimally invasive fashion; but the rigidity, size, and potential toxicity of the involved light sources remain a challenge. Here, narrowband organic light-emitting diodes (OLEDs) are developed and used for fluorescence imaging of live cells and for mapping of neuronal activity in Drosophila melanogaster via genetically encoded Ca2+ indicators. In order to avoid spectral overlap with fluorescence from the sample, distributed Bragg reflectors are integrated onto the OLEDs to block their long-wavelength emission tail, which enables an image contrast comparable to conventional, much bulkier mercury light sources. As OLEDs can be fabricated on mechanically flexible substrates and structured into arrays of cell-sized pixels, this work opens a new pathway for the development of implantable light sources that enable functional imaging and sensing in freely moving animals.


Asunto(s)
Calcio/metabolismo , Microscopía Fluorescente/instrumentación , Semiconductores , Animales , Drosophila melanogaster/citología , Ratones , Células 3T3 NIH , Neuronas/metabolismo
9.
J Phys Chem Lett ; 8(22): 5621-5625, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29095624

RESUMEN

We present organic near-infrared photodetectors based on the absorption of charge-transfer (CT) states at the zinc-phthalocyanine-C60 interface. By using a resonant optical cavity device architecture, we achieve a narrowband detection, centered around 1060 nm and well below (>200 nm) the optical gap of the neat materials. We measure transient photocurrent responses at wavelengths of 532 and 1064 nm, exciting dominantly the neat materials or the CT state, respectively, and obtain rise and fall times of a few nanoseconds at short circuit, independent of the excitation wavelength. The current transients are modeled with time-dependent drift-diffusion simulations of electrons and holes which reconstruct the photocurrent signal, including capacitance and series resistance effects. The hole mobility of the donor material is identified as the limiting factor for the high-frequency response. With this knowledge, we demonstrate a new device concept, which balances hole and electron extraction times and achieves a cutoff frequency of 68 MHz upon 1064 nm CT excitation.

10.
Adv Mater ; 29(33)2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28675522

RESUMEN

Spectroscopic photodetection is a powerful tool in disciplines such as medical diagnosis, industrial process monitoring, or agriculture. However, its application in novel fields, including wearable and biointegrated electronics, is hampered by the use of bulky dispersive optics. Here, solution-processed organic donor-acceptor blends are employed in a resonant optical cavity device architecture for wavelength-tunable photodetection. While conventional photodetectors respond to above-gap excitation, the cavity device exploits weak subgap absorption of intermolecular charge-transfer states of the intercalating poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT):[6,6]-phenyl-C61-butyric acid methyl ester (PCBM) bimolecular crystal. This enables a highly wavelength selective, near-infrared photoresponse with a spectral resolution down to 14 nm, as well as dark currents and detectivities comparable with commercial inorganic photodetectors. Based on this concept, a miniaturized spectrophotometer, comprising an array of narrowband cavity photodetectors, is fabricated by using a blade-coated PBTTT:PCBM thin film with a thickness gradient. As an application example, a measurement of the transmittance spectrum of water by this device is demonstrated.

11.
Nat Commun ; 8: 15421, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28580934

RESUMEN

Blending organic electron donors and acceptors yields intermolecular charge-transfer states with additional optical transitions below their optical gaps. In organic photovoltaic devices, such states play a crucial role and limit the operating voltage. Due to its extremely weak nature, direct intermolecular charge-transfer absorption often remains undetected and unused for photocurrent generation. Here, we use an optical microcavity to increase the typically negligible external quantum efficiency in the spectral region of charge-transfer absorption by more than 40 times, yielding values over 20%. We demonstrate narrowband detection with spectral widths down to 36 nm and resonance wavelengths between 810 and 1,550 nm, far below the optical gap of both donor and acceptor. The broad spectral tunability via a simple variation of the cavity thickness makes this innovative, flexible and potentially visibly transparent device principle highly suitable for integrated low-cost spectroscopic near-infrared photodetection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA