Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9334, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291415

RESUMEN

Carbon capture and storage is a key technology to abate CO2 emissions. One of the challenges towards ensuring the efficiency and the security of CO2 storage in reservoirs, such as open saline aquifers, is the low pore space utilization. This study investigates the feasibility of using an artificial Si-gel barrier to enhance pore space utilisation in such reservoirs under variable geological conditions. Conceptually, enhanced CO2 capillary trapping is achieved by emplacing a disk-shaped, low-permeability barrier above the CO2 injection point forcing the injected CO2 to migrate laterally underneath the barrier before transitioning to buoyancy-controlled migration. Multiphase fluid flow simulations were conducted to test the feasibility of this concept. Sensitivity analysis revealed that the barrier exhibits a strong control on CO2 plume geometry. Specifically, the relative impact of the barrier diameter on increasing the CO2 plume width, reducing the plume height and enhancing trapping varied between 67 and 86%. Capillary trapping was enhanced by 40-60% with a 20 m increase in barrier diameter in low permeability reservoirs. Additionally, the results indicate that the barrier can enhance the security of trapping CO2 in high permeability reservoirs. Results were tested for the South-West Hub reservoir, a case study area in Western Australia.


Asunto(s)
Dióxido de Carbono , Agua Subterránea , Dióxido de Carbono/análisis , Estudios de Factibilidad , Carbono , Secuestro de Carbono
2.
Food Sci Nutr ; 6(1): 47-53, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29387360

RESUMEN

The research was aimed to observe the effect of malting and fermentation on antinutritional component and functional characteristics of sorghum flour. For whole sorghum flour, cleaned sorghum grain was milled to pass through 40 mesh sieve. For malting, cleaned sorghum grain was steeped in 0.2% calcium hydroxide solution for 24 hr and then germinated for 48 hr at 90% RH and 27 ± 2°C. Sprout was removed, dried in hot air oven at 50 ± 2°C for 24 hr and milled to pass through 40 mesh sieve. For fermented sorghum flour, 13.3 mg% diastase and 2 mg % pepsin (on the basis of whole sorghum flour weight) was added to cooked (88 ± 2°C) sorghum flour and left for 1 hr. Lactobacillus plantarum (107 cfu/g) was inoculated and incubated at temperature 30 ± 2°C for 48 hr. The fermented slurry was dried at 50 ± 2°C in hot air oven for 24 hr and milled to pass through 40 mesh sieve. The lower yield of sorghum flour was obtained compared to whole and malted sorghum flour. Germination of sorghum reduced phytate, tannin, and oxalate by 40%, 16.12% and 49.1%, respectively, whereas fermentation of sorghum flour reduced above by 77%, 96.7% and 67.85%, respectively. There was no significant change in hydrogen cyanide in malted sorghum flour compared to whole sorghum flour, but fermentation of sorghum flour reduced hydrogen cyanide by 52.3%. Bulk density and viscosity was significantly reduced by the malting and fermentation, whereas water absorption capacity and oil absorption capacity was markedly increased by the malting and fermentation. Fermented flour was good due to reduced ANF and improved functional property despite of lower yield.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA