Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Mol Pharm ; 20(10): 4848-4867, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37642458

RESUMEN

Mechanical behavior of pharmaceutical crystals directly impacts the formulation development and manufacturing of drug products. The understanding of crystal structure-mechanical behavior of pharmaceutical and molecular crystals has recently gained substantial attention among pharmaceutical and materials scientists with the advent of advanced nanomechanical testing instruments like nanoindentation. For the past few decades, instrumented nanoindentation was a popular technique for measuring the mechanical properties of thin films and small-length scale materials. More recently it is being implemented to investigate the mechanical properties of pharmaceutical crystals. Integration of correlative microscopy techniques and environmental control opened the door for advanced structure-property correlation under processing conditions. Preventing the degradation of active pharmaceutical ingredients from external factors such as humidity, temperature, or pressure is important during processing. This review deals with the recent developments in the synchronized nanomechanical measurements of pharmaceutical crystals toward the fast and effective development of high-quality pharmaceutical drug products. This review also summarizes some recent reports to intensify how one can design and control the nanomechanical properties of pharmaceutical solids. Measurement challenges and the scope for studying nanomechanical properties of pharmaceutical crystals using nanoindentation as a function of crystal structure and in turn to develop fundamental knowledge in the structure-property relationship with the implications for drug manufacturing and development are discussed in this review. This review further highlights recently developed capabilities in nanoindentation, for example, variable temperature nanoindentation testing, in situ imaging of the indented volume, and nanoindentation coupled Raman spectroscopy that can offer new quantitative details on nanomechanical behavior of crystals and will play a decisive role in the development of coherent theories for nanomechanical study of pharmaceutical crystal.


Asunto(s)
Cristalización , Desarrollo de Medicamentos , Pruebas Mecánicas , Nanoestructuras , Dureza , Preparaciones Farmacéuticas , Ensayo de Materiales
2.
Proc Natl Acad Sci U S A ; 117(31): 18224-18230, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32680959

RESUMEN

Utilizing an ionic liquid strategy, we report crystal structures of salts of free anionic nucleobases and base pairs previously studied only computationally and in the gas phase. Reaction of tetrabutylammonium ([N4444]+) or tetrabutylphosphonium ([P4444]+) hydroxide with adenine (HAd) and thymine (HThy) led to hydrated salts of deprotonated adenine, [N4444][Ad]·2H2O, and thymine, [P4444][Thy]·2H2O, as well as the double salt cocrystal, [P4444]2[Ad][Thy]·3H2O·2HThy. The cocrystal includes the anionic [Ad-(HThy)] base pair which is a stable formation in the solid state that has previously not even been suggested. It exhibits Watson-Crick connectivity as found in DNA but which is unusual for the free neutral base pairs. The stability of the observed anionic bases and their supramolecular formations and hydrates has also been examined by electronic structure calculations, contributing to more insight into how base pairs can bind when a proton is removed and highlighting mechanisms of stabilization or chemical transformation in the DNA chains.


Asunto(s)
Adenina/química , Emparejamiento Base , Timina/química , Aniones , Cristalografía , Enlace de Hidrógeno , Modelos Moleculares , Estructura Molecular , Conformación de Ácido Nucleico
3.
Cell Mol Life Sci ; 78(21-22): 6887-6939, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34586444

RESUMEN

The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/ß-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/genética , Animales , Humanos , Proteínas de Neoplasias/genética , Polimorfismo Genético/genética , Transducción de Señal/genética
4.
J Org Chem ; 86(2): 2000-2011, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33406842

RESUMEN

A catalytic enantioselective protocol for the synthesis of aryl-methyl organophosphorus compounds is reported. Utilizing a chiral phosphoric acid as a catalyst, a wide range of indole derivatives reacted with phosphorylated quinomethanes in high yield with excellent enantioselectivity. This is the first report on the application of phosphorylated quinomethanes in asymmetric synthesis.

5.
Molecules ; 27(1)2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35011339

RESUMEN

Valproic acid (VPA) is a well-established anticonvulsant drug discovered serendipitously and marketed for the treatment of epilepsy, migraine, bipolar disorder and neuropathic pain. Apart from this, VPA has potential therapeutic applications in other central nervous system (CNS) disorders and in various cancer types. Since the discovery of its anticonvulsant activity, substantial efforts have been made to develop structural analogues and derivatives in an attempt to increase potency and decrease adverse side effects, the most significant being teratogenicity and hepatotoxicity. Most of these compounds have shown reduced toxicity with improved potency. The simple structure of VPA offers a great advantage to its modification. This review briefly discusses the pharmacology and molecular targets of VPA. The article then elaborates on the structural modifications in VPA including amide-derivatives, acid and cyclic analogues, urea derivatives and pro-drugs, and compares their pharmacological profile with that of the parent molecule. The current challenges for the clinical use of these derivatives are also discussed. The review is expected to provide necessary knowledgebase for the further development of VPA-derived compounds.


Asunto(s)
Estructura Molecular , Ácido Valproico/química , Ácido Valproico/farmacología , Amidas/química , Amidas/farmacología , Animales , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Monitoreo de Drogas , Epilepsia/tratamiento farmacológico , Humanos , Relación Estructura-Actividad , Teratógenos/química , Teratógenos/farmacología , Urea/análogos & derivados , Urea/química , Urea/farmacología , Ácido Valproico/administración & dosificación , Ácido Valproico/análogos & derivados
6.
Mol Pharm ; 17(2): 579-587, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31829631

RESUMEN

A commonly used pharmaceutical surfactant, sodium lauryl sulfate (SLS), has been reported to reduce the dissolution rate of drugs due to the formation of a less soluble drug-lauryl sulfate salt. In this study, we provide direct crystallographic evidence of the formation of salt between SLS and norfloxacin (NOR), [NORH+][LS-]·1.5 H2O. The available crystal structure also enables the use of the energy framework to gain an understanding of the structure-property relationship. Results show that the hydrophobic methyl groups in SLS dominate the surfaces of the [NORH+][LS-]·1.5 H2O crystals, resulting in the increased hydrophobicity and reduced wettability by aqueous media. Moreover, an analysis of molecular environments and energy calculations of water molecules provides insight into the stability of [NORH+][LS-]·1.5 H2O with variations in the relative humidity and temperature. In summary, important pharmaceutical properties, such as solubility, dissolution, and thermal stability, of the drug-surfactant salt [NORH+][LS-]·1.5 H2O have been characterized and understood based on crystallographic and energetic analyses of the crystal structure.


Asunto(s)
Liberación de Fármacos , Norfloxacino/química , Dodecil Sulfato de Sodio/química , Tensoactivos/química , Precipitación Química , Química Farmacéutica/métodos , Cristalografía/métodos , Sistemas de Liberación de Medicamentos/métodos , Estabilidad de Medicamentos , Humedad , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Solubilidad , Propiedades de Superficie , Temperatura , Agua/química , Humectabilidad , Difracción de Rayos X/métodos
7.
Inorg Chem ; 59(10): 7227-7237, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32364712

RESUMEN

A robust general route to lanthanide dicyanamide (DCA-) complexes has been developed where f-element salts are dissolved in DCA--based ionic liquids (ILs) directly or formed in situ, forcing coordination of these normally weakly coordinating soft N-donor anions, even in an ambient, non-moisture-excluding environment. A series of lanthanide complexes [C2mim][Ln(DCA)4(H2O)4] (C2mim = 1-ethyl-3-methylimidazolium; Ln = La, Nd, Eu, Tb, Dy, and Yb) and [C2mim]3n[La(OH2)4(µ2-DCA)4]n[La(OH2)2(µ3-DCA)3(µ2-DCA)4]2n(Cl)4n were crystallized under a variety of conditions using this methodology and structurally characterized using single crystal X-ray diffraction. Although not all examples were isostructural, the dominant feature across the series was the presence of [Ln(DCA)4(H2O)4]- anionic nodes with all terminal DCA- ligands accepting hydrogen bonds from the coordinated water molecules forming a 3D metal organic framework. To determine if any structural clues might aid in the further development of the synthetic methodology, the metal-free IL [C1mim][DCA] (C1mim = 1,3-dimethylimidazolium), a room-temperature solid, crystalline analogue of the reaction IL, which is liquid at room temperature, was also prepared and structurally characterized. The ready isolation of these compounds allowed us to begin an investigation of the physical properties such as the luminescence at room and low temperatures for the Eu, Tb, and Dy representatives.

8.
J Fluoresc ; 30(4): 819-825, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32430863

RESUMEN

In the present report, thermally stimulated luminescence (TSL) of quartz and limestone samples irradiated with ß and γ-rays has been investigated. Herein the formation of trap depths and calculation of kinetic parameters of ß and γ - irradiated quartz and limestone samples were studied through thermoluminescence (TL) glow curve analyses. The quartz and limestone samples were collected from various sites of Chhattisgarh (Patharia and Dalli-Rajhara mines). The collected raw samples were annealed at 400 °C. The phase formation of collected samples is confirmed by X-ray diffraction studies. The grain sizes of the samples are determined by using Debye-Scherrer formula. TL glow curves of the collected samples were recorded for various doses of ß and γ-rays. Kinetic parameters such as order of kinetics frequency factor and trap depth were calculated by employing CGCD methods. A comparative study on the TL properties of the geological materials under ß and γ-irradiation was done. The trap model analysis was executed to determine the nature of traps responsible for dominant TL peaks of ß and γ-irradiated limestone and quartz samples.

9.
Acc Chem Res ; 51(11): 2957-2967, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30351918

RESUMEN

Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with diverse fields such as mechanochemistry, phase transformations, polymorphism, and chemical, mechanical, and materials engineering have slowed understanding. Any such understanding also needs conceptual advances-sophisticated instrumentation, computational modeling, and chemical insight-lack of such synergy has surely hindered progress in this important field. This Account describes our efforts at focusing down into this interesting subject from the viewpoint of crystal engineering, which is the synthesis and design of functional molecular solids. Mechanical properties of soft molecular crystals imply molecular movement within the solid; the type of property depends on the likelihood of such movement in relation to the applied stress, including the ability of molecules to restore themselves to their original positions when the stress is removed. Therefore, one is interested in properties such as elasticity, plasticity, and brittleness, which are linked to structural anisotropy and the degree to which a structure veers toward isotropic character. However, these matters are still by no means settled and are system dependent. While elasticity and brittleness are probably displayed by all molecular solids, the window of plasticity is perhaps the one that is most amenable to crystal engineering strategies and methods. In all this, one needs to note that mechanical properties have a kinetic component: a crystal that is elastic under slow stress application may become plastic or brittle if the same stress is applied quickly. In this context, nanoindentation studies have shown themselves to be of invaluable importance in understanding structural anisotropy. Several problems in solid state chemistry, including classical ones, such as the melting point alternation in aliphatic straight chain dicarboxylic acids and hardness modulation in solid solutions, have been understood more clearly with this technique. The way may even be open to picoindentation studies and the observation of molecular level movements. As in all types of crystal engineering, an understanding of the intermolecular interactions can lead to property oriented crystal design, and we present examples where complex properties may be deliberately turned on or off in organic crystals: one essentially fine-tunes the degree of isotropy/anisotropy by modulating interactions such as hydrogen bonding, halogen bonding, π···π interactions, and C-H···π interactions. The field is now wide open as is attested by the activities of several research groups working in the area. It is set to take off into the domains of smart materials, soft crystals, and superelasticity and a full understanding of solid state reactivity.

10.
Inorg Chem ; 58(3): 1764-1773, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30640462

RESUMEN

Highly charged metal ions are difficult to investigate in weakly coordinating ionic liquids (ILs) because of the insolubility of their solid forms, but the molecular liquid TiCl4 offers a way to react tetravalent metal ions in an IL. Reactions of TiCl4 with 1-butyl-3-methylimidazolium ([C4mim]+)-based ILs containing chloride or bromide lead to mixtures of highly metastable amorphous solids and small amounts of crystalline chlorotitanate salts including [C4mim]2[TiCl6] and two polymorphs of [C4mim]2[Ti2Cl10] in a manner not well correlated with stoichiometry or anion identity. The reaction of TiCl4 with [C4mim][BF4] yields crystals of the mixed fluoro-chloro complex [C4mim]2[Ti4F6Cl12], indicating spontaneous reaction of the IL ions to generate HF in situ. These unusual behaviors are explained in terms of the exceptionally high acidity of Ti4+ and the unusual behavior of TiCl4 among metal halides as a nonpolar molecular compound.

11.
J Am Chem Soc ; 137(31): 9912-21, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26192986

RESUMEN

An elastic organic crystal, 2,6-dichlorobenzylidine-4-fluoro-3-nitroaniline (DFNA), which also shows thermosalient behavior, is studied. The presence of these two distinct properties in the same crystal is unusual and unprecedented because they follow respectively from isotropy and anisotropy in the crystal packing. Therefore, while both properties lead from the crystal structure, the mechanisms for bending and thermosalience are quite independent of one another. Crystals of the low-temperature (α) form of the title compound are bent easily without any signs of fracture with the application of deforming stress, and this bending is within the elastic limit. The crystal structure of the α-form was determined (P21/c, Z = 4, a = 3.927(7) Å, b = 21.98(4) Å, c = 15.32(3) Å). There is an irreversible phase transition at 138 °C of this form to the high-temperature ß-form followed by melting at 140 °C. Variable-temperature X-ray powder diffraction was used to investigate the structural changes across the phase transition and, along with an FTIR study, establishes the structure of the ß-form. A possible rationale for strain build-up is given. Thermosalient behavior arises from anisotropic changes in the three unit cell parameters across the phase transition, notably an increase in the b axis parameter from 21.98 to 22.30 Å. A rationale is provided for the existence of both elasticity and thermosalience in the same crystal. FTIR studies across the phase transition reveal important mechanistic insights: (i) increased π···π repulsions along [100] lead to expansion along the a axis; (ii) change in alignment of C-Cl and NO2 groups result from density changes; and (iii) competition between short-range repulsive (π···π) interactions and long-range attractive dipolar interactions (C-Cl and NO2) could lie at the origin of the existence of two distinctive properties.

12.
J Am Chem Soc ; 137(5): 1794-7, 2015 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-25634429

RESUMEN

In the context of processing of molecular solids, especially pharmaceuticals, hardness is an important property that often determines the manufacturing steps employed. Through nanoindentation studies on a series of omeprazole polymorphs, in which the proportions of the 5- and 6-methoxy tautomers vary systematically, we demonstrate that solid-solution strengthening can be effectively employed to engineer the hardness of organic solids. High hardness can be attained by increasing lattice resistance to shear sliding of molecular layers during plastic deformation.

13.
Mol Pharm ; 12(3): 889-97, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25587626

RESUMEN

Crystals of voriconazole, an antifungal drug, are soft in nature, and this is disadvantageous during compaction studies where pressure is applied on the solid. Crystal engineering is used to make cocrystals and salts with modified mechanical properties (e.g., hardness). Cocrystals with biologically safe coformers such as fumaric acid, 4-hydroxybenzoic acid, and 4-aminobenzoic acid and salts with hydrochloric acid and oxalic acid are prepared through solvent assisted grinding. The presence (salt) or absence (cocrystal) of proton transfer in these multicomponent crystals is unambiguously confirmed with single crystal X-ray diffraction. All the cocrystals have 1:1 stoichiometry, whereas salts exhibit variable stoichiometries such as HCl salt (1:2) and oxalate salts (1:1.5 and 1:1). The nanoindentation technique was applied on single crystals of the salts and cocrystals. The salts exhibit better hardness than the drug and cocrystals in the order salts ≫ drug > cocrystals. The molecular origin of this mechanical modulation is explained on the basis of slip planes in the crystal structure and relative orientations of the molecules with respect to the nanoindentation direction. The hydrochloride salt is the hardest solid in this family. This may be useful for tableting of the drug during formulation and in drug development.


Asunto(s)
Voriconazol/química , Antifúngicos/administración & dosificación , Antifúngicos/química , Fenómenos Biomecánicos , Biofarmacia , Química Farmacéutica , Cristalización , Módulo de Elasticidad , Dureza , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Sales (Química)/química , Comprimidos , Voriconazol/administración & dosificación
14.
Angew Chem Int Ed Engl ; 54(9): 2674-8, 2015 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-25586873

RESUMEN

The intermolecular interactions and structural features in crystals of seven halogenated N-benzylideneanilines (Schiff bases), all of which exhibit remarkable flexibility, were examined to identify the common packing features that are the raison d'être for the observed elasticity. The following two features, in part related, were identified as essential to obtain elastic organic crystals: 1) A multitude of weak and dispersive interactions, including halogen bonds, which may act as structural buffers for deformation through easy rupture and reformation during bending; and 2) corrugated packing patterns that would get interlocked and, in the process, prevent long-range sliding of molecular planes.

15.
Angew Chem Int Ed Engl ; 53(48): 13102-5, 2014 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-25264144

RESUMEN

Intergrowth polymorphism refers to the existence of distinct structural domains within a single crystal of a compound. The phenomenon is exhibited by form II of the active pharmaceutical ingredient felodipine, and the associated microstructure is a significant feature of the compound's structural identity. Employing the technique of nanoindentation on form II reveals a bimodal mechanical response on specific single-crystal faces, demonstrating distinct properties for two polymorphic forms within the same crystal.


Asunto(s)
Antiarrítmicos/química , Cristalización/métodos , Felodipino/química , Difracción de Rayos X/métodos , Polimorfismo Genético
16.
Diagn Microbiol Infect Dis ; 108(3): 116151, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38184983

RESUMEN

Viral hepatitis (VH) is a significant public health issue with tremendous potential to aggravate into chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Recent decade has witnessed remarkable uprising in the drug development and effective treatment of VH. An upsurge is seen in identification of antiviral therapies with low rates of viral resistance, the improvement of Hepatitis B Virus (HBV) vaccination and the development of direct-acting antivirals for Hepatitis C Virus (HCV). But unfortunately, the "2030 worldwide eradication" objective of World Health Organization (WHO) is still unmet. It can be largely attributed to the deficit faced by the healthcare system concerning screening and diagnosis. A timely, accurate and comprehensive screening; encompassing maximum population coverage is essential to combat this disease. However, advancements in VH diagnostics remain inadequate and with a marginal use in routine practice. This paper deliberates upon the lacunae in traditional and prevailing diagnostic methodology of viral hepatitis, especially their inadequacy in meeting the unique situations prevailing low- and middle-income countries (LMIC).


Asunto(s)
Hepatitis C Crónica , Hepatitis C , Hepatitis Viral Humana , Neoplasias Hepáticas , Humanos , Antivirales/uso terapéutico , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis Viral Humana/diagnóstico , Hepatitis Viral Humana/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/prevención & control
17.
Asian J Neurosurg ; 19(2): 210-220, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38974440

RESUMEN

Objective Intraoperative neuromonitoring (IONM) is an acknowledged tool for real-time neuraxis assessment during surgery. Somatosensory evoked potential (SSEP) and transcranial motor evoked potential (MEP) are commonest deployed modalities of IONM. Role of SSEP and MEP in intradural extramedullary spinal cord tumor (IDEMSCT) surgery is not well established. The aim of this study was to evaluate sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of SSEP and transcranial MEP, in detection of intraoperative neurological injury in IDEMSCT patients as well as their postoperative limb-specific neurological improvement assessment at fixed intervals till 30 days. Materials and Methods Symptomatic patients with IDEMSCTs were selected according to the inclusion criteria of study protocol. On modified McCormick (mMC) scale, their sensory-motor deficit was assessed both preoperatively and postoperatively. Surgery was done under SSEP and MEP (transcranial) monitoring using appropriate anesthetic agents. Gross total/subtotal resection of tumor was achieved as per IONM warning alarms. Sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of SSEP and MEP were calculated considering postoperative neurological changes as "reference standard." Patients were followed up at postoperative day (POD) 0, 1, 7, and 30 for convalescence. Statistical Analysis With appropriate tests of significance, statistical analysis was carried out. Receiver-operating characteristic curve was used to find cutoff point of mMC for SSEP being recordable in patients with higher neurological deficit along with calculation of sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accuracy of SSEP and MEP for prediction of intraoperative neurological injury. Results Study included 32 patients. Baseline mean mMC value was 2.59. Under neuromonitoring, gross total resection of IDEMSCT was achieved in 87.5% patients. SSEP was recordable in subset of patients with mMC value less than or equal to 2 with diagnostic accuracy of 100%. MEP was recordable in all patients and it had 96.88% diagnostic accuracy. Statistically significant neurological improvement was noted at POD-7 and POD-30 follow-up. Conclusion SSEP and MEP individually carry high diagnostic accuracy in detection of intraoperative neurological injuries in patients undergoing IDEMSCT surgery. MEP continues to monitor the neuraxis, even in those subsets of patients where SSEP fails to record.

18.
J Am Chem Soc ; 135(22): 8121-4, 2013 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-23688149

RESUMEN

Nanoindentation studies on α,ω-alkanedicarboxylic acids reveal that the elastic modulus, E, shows an odd-even alternation in exactly the same manner as the melting temperature, Tm. These results are consistent with the hypothesis that the strained molecular conformations in the odd diacids are the reasons for these alternations in Tm. The same packing features that lower Tm in the odd acids lead to easy accommodation of the deformation during nanoindentation and hence their low E.


Asunto(s)
Alcanos/química , Ácidos Dicarboxílicos/química , Conformación Molecular , Temperatura
19.
Clin Transl Oncol ; 25(12): 3332-3344, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37058208

RESUMEN

The use of tobacco products is one of the established contributors toward the development and spread of oral cancer. Additionally, recent research has indicated oral microbiome, infections with Human papilloma virus (HPV), Epstein-Barr virus (EBV), Candida as significant contributing factors to this disease along with lifestyle habits. Deregulation of cellular pathways envisaging metabolism, transcription, translation, and epigenetics caused by these risk factors either individually or in unison is manifold, resulting in the increased risk of oral cancer. Globally, this cancer continues to exist as one of the major causes of cancer-related mortalities; the numbers in the developing South Asian countries clearly indicate yearly escalation. This review encompasses the variety of genetic modifications, including adduct formation, mutation (duplication, deletion, and translocation), and epigenetic changes evident in oral squamous cell carcinoma (OSCC). In addition, it highlights the interference caused by tobacco products in Wnt signaling, PI3K/Akt/mTOR, JAK-STAT, and other important pathways. The information provided also ensures a comprehensive and critical revisit to non-tobacco-induced OSCC. Extensive literature survey and analysis has been conducted to generate the chromosome maps specifically highlighting OSCC-related mutations with the potential to act as spectacles for the early diagnosis and targeted treatment of this disease cancer.


Asunto(s)
Carcinoma de Células Escamosas , Infecciones por Virus de Epstein-Barr , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas/patología , Fosfatidilinositol 3-Quinasas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de Cabeza y Cuello/complicaciones , Mutación
20.
Asian J Neurosurg ; 18(3): 631-635, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38152515

RESUMEN

Intracranial dermoid cysts are rare dysembryonic tumors of benign nature. These are uncommon in adults. If present, they are usually located in the midline or along the lines of embryonic fusion. The posterior fossa region is an infrequent site. Extradural or interdural locations are even more rare. In this case report, the authors report a laterally located large posterior fossa right cerebellar convexity interdural and extradural dermoid cyst over the sigmoid sinus. It was managed by totally extradural maximum possible safe decompression with microneurosurgical technique. The authors share their experience of addressing this rare pathology at the rarest location with unusual imaging findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA