Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13326, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858479

RESUMEN

Previous work has shown that environmental variables affect SARS-CoV-2 transmission, but it is unclear whether different strains show similar environmental responses. Here we leverage genetic data on the transmission of three (Alpha, Delta and Omicron BA.1) variants of SARS-CoV-2 throughout England, to unpick the roles that climate and public-health interventions play in the circulation of this virus. We find evidence for enhanced transmission of the virus in colder conditions in the first variant selective sweep (of Alpha, in winter), but limited evidence of an impact of climate in either the second (of Delta, in the summer, when vaccines were prevalent) or third sweep (of Omicron, in the winter, during a successful booster-vaccination campaign). We argue that the results for Alpha are to be expected if the impact of climate is non-linear: we find evidence of an asymptotic impact of temperature on the alpha variant transmission rate. That is, at lower temperatures, the influence of temperature on transmission is much higher than at warmer temperatures. As with the initial spread of SARS-CoV-2, however, the overwhelming majority of variation in disease transmission is explained by the intrinsic biology of the virus and public-health mitigation measures. Specifically, when vaccination rates are high, a major driver of the spread of a new variant is it's ability to evade immunity, and any climate effects are secondary (as evidenced for Delta and Omicron). Climate alone cannot describe the transmission dynamics of emerging SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , COVID-19/transmisión , COVID-19/virología , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Inglaterra/epidemiología , Estaciones del Año , Temperatura , Clima , Vacunas contra la COVID-19/inmunología
2.
PLoS One ; 19(6): e0301785, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38870106

RESUMEN

BACKGROUND: The COVID-19 pandemic has caused over 7.02 million deaths as of January 2024 and profoundly affected most countries' Gross Domestic Product (GDP). Here, we study the interaction of SARS-CoV-2 transmission, mortality, and economic output between January 2020 and December 2022 across 25 European countries. METHODS: We use a Bayesian mixed effects model with auto-regressive terms to estimate the temporal relationships between disease transmission, excess deaths, changes in economic output, transit mobility and non-pharmaceutical interventions (NPIs) across countries. RESULTS: Disease transmission intensity (logRt) decreases GDP and increases excess deaths, where the latter association is longer-lasting. Changes in GDP as well as prior week transmission intensity are both negatively associated with each other (-0.241, 95% CrI: -0.295 - -0.189). We find evidence of risk-averse behaviour, as changes in transit and prior week transmission intensity are negatively associated (-0.055, 95% CrI: -0.074 to -0.036). Our results highlight a complex cost-benefit trade-off from individual NPIs. For example, banning international travel is associated with both increases in GDP (0.014, 0.002-0.025) and decreases in excess deaths (-0.014, 95% CrI: -0.028 - -0.001). Country-specific random effects, such as the poverty rate, are positively associated with excess deaths while the UN government effectiveness index is negatively associated with excess deaths. INTERPRETATION: The interplay between transmission intensity, excess deaths, population mobility and economic output is highly complex, and none of these factors can be considered in isolation. Our results reinforce the intuitive idea that significant economic activity arises from diverse person-to-person interactions. Our analysis quantifies and highlights that the impact of disease on a given country is complex and multifaceted. Long-term economic impairments are not fully captured by our model, as well as long-term disease effects (Long COVID).


Asunto(s)
Teorema de Bayes , COVID-19 , Producto Interno Bruto , Pandemias , SARS-CoV-2 , COVID-19/mortalidad , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/economía , Humanos , Europa (Continente)/epidemiología , Viaje
3.
PLOS Glob Public Health ; 3(12): e0002063, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38150465

RESUMEN

There has been raging discussion and debate around the quality of COVID death data in South Asia. According to WHO, of the 5.5 million reported COVID-19 deaths from 2020-2021, 0.57 million (10%) were contributed by five low and middle income countries (LMIC) countries in the Global South: India, Pakistan, Bangladesh, Sri Lanka and Nepal. However, a number of excess death estimates show that the actual death toll from COVID-19 is significantly higher than the reported number of deaths. For example, the IHME and WHO both project around 14.9 million total deaths, of which 4.5-5.5 million were attributed to these five countries in 2020-2021. We focus our gaze on the COVID-19 performance of these five countries where 23.5% of the world population lives in 2020 and 2021, via a counterfactual lens and ask, to what extent the mortality of one LMIC would have been affected if it adopted the pandemic policies of another, similar country? We use a Bayesian semi-mechanistic model developed by Mishra et al. (2021) to compare both the reported and estimated total death tolls by permuting the time-varying reproduction number (Rt) across these countries over a similar time period. Our analysis shows that, in the first half of 2021, mortality in India in terms of reported deaths could have been reduced to 96 and 102 deaths per million compared to actual 170 reported deaths per million had it adopted the policies of Nepal and Pakistan respectively. In terms of total deaths, India could have averted 481 and 466 deaths per million had it adopted the policies of Bangladesh and Pakistan. On the other hand, India had a lower number of reported COVID-19 deaths per million (48 deaths per million) and a lower estimated total deaths per million (80 deaths per million) in the second half of 2021, and LMICs other than Pakistan would have lower reported mortality had they followed India's strategy. The gap between the reported and estimated total deaths highlights the varying level and extent of under-reporting of deaths across the subcontinent, and that model estimates are contingent on accuracy of the death data. Our analysis shows the importance of timely public health intervention and vaccines for lowering mortality and the need for better coverage infrastructure for the death registration system in LMICs.

4.
Commun Phys ; 6(1): 146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665405

RESUMEN

Uncertainty can be classified as either aleatoric (intrinsic randomness) or epistemic (imperfect knowledge of parameters). The majority of frameworks assessing infectious disease risk consider only epistemic uncertainty. We only ever observe a single epidemic, and therefore cannot empirically determine aleatoric uncertainty. Here, we characterise both epistemic and aleatoric uncertainty using a time-varying general branching process. Our framework explicitly decomposes aleatoric variance into mechanistic components, quantifying the contribution to uncertainty produced by each factor in the epidemic process, and how these contributions vary over time. The aleatoric variance of an outbreak is itself a renewal equation where past variance affects future variance. We find that, superspreading is not necessary for substantial uncertainty, and profound variation in outbreak size can occur even without overdispersion in the offspring distribution (i.e. the distribution of the number of secondary infections an infected person produces). Aleatoric forecasting uncertainty grows dynamically and rapidly, and so forecasting using only epistemic uncertainty is a significant underestimate. Therefore, failure to account for aleatoric uncertainty will ensure that policymakers are misled about the substantially higher true extent of potential risk. We demonstrate our method, and the extent to which potential risk is underestimated, using two historical examples.

5.
J R Stat Soc Ser A Stat Soc ; 185(Suppl 1): S86-S95, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38607865

RESUMEN

We propose a new framework to model the COVID-19 epidemic of the United Kingdom at the local authority level. The model fits within a general framework for semi-mechanistic Bayesian models of the epidemic based on renewal equations, with some important innovations, including a random walk modelling the reproduction number, incorporating information from different sources, including surveys to estimate the time-varying proportion of infections that lead to reported cases or deaths, and modelling the underlying infections as latent random variables. The model is designed to be updated daily using publicly available data. We envisage the model to be useful for now-casting and short-term projections of the epidemic as well as estimating historical trends. The model fits are available on a public website: https://imperialcollegelondon.github.io/covid19local. The model is currently being used by the Scottish government to inform their interventions.

7.
Science ; 372(6544): 1-7, 2021. graf
Artículo en Inglés | LILACS, CONASS, ColecionaSUS, SES-SP, SESSP-IALPROD, SES-SP | ID: biblio-1247888

RESUMEN

Cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in Manaus, Brazil, resurged in late 2020 despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1 acquired 17 mutations, including a trio in the spike protein (K417T, E484K, and N501Y) associated with increased binding to the human ACE2 (angiotensin-converting enzyme 2) receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7- to 2.4-fold more transmissible and that previous (non-P.1) infection provides 54 to 79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness.


Asunto(s)
Angiotensinas , Genoma , Betacoronavirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA