Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 21(12): 100432, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36280141

RESUMEN

Rescoring of mass spectrometry (MS) search results using spectral predictors can strongly increase peptide spectrum match (PSM) identification rates. This approach is particularly effective when aiming to search MS data against large databases, for example, when dealing with nonspecific cleavage in immunopeptidomics or inflation of the reference database for noncanonical peptide identification. Here, we present inSPIRE (in silico Spectral Predictor Informed REscoring), a flexible and performant open-source rescoring pipeline built on Prosit MS spectral prediction, which is compatible with common database search engines. inSPIRE allows large-scale rescoring with data from multiple MS search files, increases sensitivity to minor differences in amino acid residue position, and can be applied to various MS sample types, including tryptic proteome digestions and immunopeptidomes. inSPIRE boosts PSM identification rates in immunopeptidomics, leading to better performance than the original Prosit rescoring pipeline, as confirmed by benchmarking of inSPIRE performance on ground truth datasets. The integration of various features in the inSPIRE backbone further boosts the PSM identification in immunopeptidomics, with a potential benefit for the identification of noncanonical peptides.


Asunto(s)
Péptidos , Proteómica , Proteómica/métodos , Bases de Datos de Proteínas , Péptidos/química , Motor de Búsqueda , Espectrometría de Masas , Algoritmos , Programas Informáticos
2.
Proteomics ; 23(2): e2200271, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36189881

RESUMEN

The discovery of many noncanonical peptides detectable with sensitive mass spectrometry inside, outside, and on cells shepherded the development of novel methods for their identification, often not supported by a systematic benchmarking with other methods. We here propose iBench, a bioinformatic tool that can construct ground truth proteomics datasets and cognate databases, thereby generating a training court wherein methods, search engines, and proteomics strategies can be tested, and their performances estimated by the same tool. iBench can be coupled to the main database search engines, allows the selection of customized features of mass spectrometry spectra and peptides, provides standard benchmarking outputs, and is open source. The proof-of-concept application to tryptic proteome digestions, immunopeptidomes, and synthetic peptide libraries dissected the impact that noncanonical peptides could have on the identification of canonical peptides by Mascot search with rescoring via Percolator (Mascot+Percolator).


Asunto(s)
Algoritmos , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Programas Informáticos , Péptidos/análisis , Motor de Búsqueda/métodos , Bases de Datos de Proteínas
3.
Mol Cell Proteomics ; 20: 100158, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34607014

RESUMEN

Proteasome-generated spliced epitopes presented by HLA class I complexes are emerging targets for T cell targeted immunotherapies. Their identification by mass spectrometry triggered heated debates, which find a representative opinion in one of the two fronts in the recent perspective article by Arie Admon. Briefly, he suggests that proteasomes cannot efficiently catalyze such a reaction, and, thus, that all spliced peptides identified in HLA class I immunopeptidomes and other specimens are artifacts. This hypothesis is in contrast with in vitro, in cellula, and in vivo results published since the discovery of proteasome-catalyzed peptide splicing in 2004.


Asunto(s)
Péptidos , Complejo de la Endopetidasa Proteasomal , Epítopos , Espectrometría de Masas , Péptidos/química , Complejo de la Endopetidasa Proteasomal/química
4.
Proteomics ; 22(10): e2100226, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35184383

RESUMEN

Unconventional epitopes presented by HLA class I complexes are emerging targets for T cell targeted immunotherapies. Their identification by mass spectrometry (MS) required development of novel methods to cope with the large number of theoretical candidates. Methods to identify post-translationally spliced peptides led to a broad range of outcomes. We here investigated the impact of three common database search engines - that is, Mascot, Mascot+Percolator, and PEAKS DB - as final identification step, as well as the features of target database on the ability to correctly identify non-spliced and cis-spliced peptides. We used ground truth datasets measured by MS to benchmark methods' performance and extended the analysis to HLA class I immunopeptidomes. PEAKS DB showed better precision and recall of cis-spliced peptides and larger number of identified peptides in HLA class I immunopeptidomes than the other search engine strategies. The better performance of PEAKS DB appears to result from better discrimination between target and decoy hits and hence a more robust FDR estimation, and seems independent to peptide and spectrum features here investigated.


Asunto(s)
Péptidos , Motor de Búsqueda , Epítopos , Espectrometría de Masas , Péptidos/química , Programas Informáticos
5.
Biochem J ; 478(24): 4187-4202, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34940832

RESUMEN

Throughout its evolution, the human immune system has developed a plethora of strategies to diversify the antigenic peptide sequences that can be targeted by the CD8+ T cell response against pathogens and aberrations of self. Here we provide a general overview of the mechanisms that lead to the diversity of antigens presented by MHC class I complexes and their recognition by CD8+ T cells, together with a more detailed analysis of recent progress in two important areas that are highly controversial: the prevalence and immunological relevance of unconventional antigen peptides; and cross-recognition of antigenic peptides by the T cell receptors of CD8+ T cells.


Asunto(s)
Antígenos , Linfocitos T CD8-positivos , Antígenos de Histocompatibilidad Clase I , Modelos Inmunológicos , Péptidos , Receptores de Antígenos de Linfocitos T , Animales , Antígenos/química , Antígenos/inmunología , Linfocitos T CD8-positivos/química , Linfocitos T CD8-positivos/inmunología , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Péptidos/química , Péptidos/inmunología , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/inmunología
6.
Eur J Immunol ; 50(2): 270-283, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31729751

RESUMEN

Dissecting the different steps of the processing and presentation of tumor-associated antigens is a key aspect of immunotherapies enabling to tackle the immune response evasion attempts of cancer cells. The immunodominant glycoprotein gp100209-217 epitope, which is liberated from the melanoma differentiation antigen gp100PMEL17 , is part of immunotherapy trials. By analyzing different human melanoma cell lines, we here demonstrate that a pool of N-terminal extended peptides sharing the common minimal epitope is generated by melanoma proteasome subtypes. In vitro and in cellulo experiments indicate that ER-resident aminopeptidase 1 (ERAP1)-but not ERAP2-defines the processing of this peptide pool thereby modulating the T-cell recognition of melanoma cells. By combining the outcomes of our studies and others, we can sketch the complex processing and endogenous presentation pathway of the gp100209-217 -containing epitope/peptides, which are produced by proteasomes and are translocated to the vesicular compartment through different pathways, where the precursor peptides that reach the endoplasmic reticulum are further processed by ERAP1. The latter step enhances the activation of epitope-specific T lymphocytes, which might be a target to improve the efficiency of anti-melanoma immunotherapy.


Asunto(s)
Aminopeptidasas/inmunología , Presentación de Antígeno/inmunología , Retículo Endoplásmico/inmunología , Epítopos de Linfocito T/inmunología , Melanoma/inmunología , Melanoma/terapia , Antígenos de Histocompatibilidad Menor/inmunología , Antígenos de Neoplasias , Línea Celular Tumoral , Células HeLa , Humanos , Factores Inmunológicos/inmunología , Inmunoterapia/métodos , Péptidos/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Linfocitos T/inmunología
7.
Proteomics ; : e2000112, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32533627

RESUMEN

The identification of peptides bound to human leukocyte antigen class I (HLA-I) molecules-that is, the HLA-I immunopeptidome-is a useful tool in the hunt for epitopes suitable for vaccinations and immunotherapies. These peptides are mainly generated by proteasomes through peptide hydrolysis and peptide splicing. In this issue, Nicastri and colleagues compared different methods for the elution of HLA class I-associated peptides. It is demonstrated that the choice of HLA-associated peptide enrichment and purification strategy affects peptide yields and creates a bias in detected sequence repertoire. The author carried out this technical brief through the analysis of canonical non-spliced peptides. However, their study left out any analysis of post-translationally spliced peptides, thereby missing an opportunity to shed light on the persistent debate of the frequency of these unconventional peptides.

8.
J Biol Chem ; 294(19): 7740-7754, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-30914481

RESUMEN

An efficient immunosurveillance of CD8+ T cells in the periphery depends on positive/negative selection of thymocytes and thus on the dynamics of antigen degradation and epitope production by thymoproteasome and immunoproteasome in the thymus. Although studies in mouse systems have shown how thymoproteasome activity differs from that of immunoproteasome and strongly impacts the T cell repertoire, the proteolytic dynamics and the regulation of human thymoproteasome are unknown. By combining biochemical and computational modeling approaches, we show here that human 20S thymoproteasome and immunoproteasome differ not only in the proteolytic activity of the catalytic sites but also in the peptide transport. These differences impinge upon the quantity of peptide products rather than where the substrates are cleaved. The comparison of the two human 20S proteasome isoforms depicts different processing of antigens that are associated to tumors and autoimmune diseases.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD8-positivos/enzimología , Simulación por Computador , Complejo de la Endopetidasa Proteasomal/química , Células A549 , Animales , Linfocitos T CD8-positivos/inmunología , Catálisis , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/inmunología , Células THP-1
9.
Trends Immunol ; 38(12): 904-915, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28830734

RESUMEN

CD8+ T cell specificity depends on the recognition of MHC class I-epitope complexes at the cell surface. These epitopes are mainly produced via degradation of proteins by the proteasome, generating fragments of the original sequence. However, it is now clear that proteasomes can produce a significant portion of epitopes by reshuffling the antigen sequence, thus expanding the potential antigenic repertoire. MHC class I-restricted spliced epitopes have been described in tumors and infections, suggesting an unpredicted relevance of these peculiar peptides. We review current knowledge about proteasome-catalyzed peptide splicing (PCPS), the emerging rules governing this process, and the potential implications for our understanding and therapeutic use of CD8+ T cells, as well as mechanisms generating other non-canonical antigenic epitopes targeted by the T cell response.


Asunto(s)
Antígenos/metabolismo , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/metabolismo , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Presentación de Antígeno , Antígenos/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Activación de Linfocitos , Péptidos/inmunología , Proteolisis
10.
Eur J Immunol ; 46(5): 1109-18, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26909514

RESUMEN

CD8(+) T cells responding to infection recognize pathogen-derived epitopes presented by MHC class-I molecules. While most of such epitopes are generated by proteasome-mediated antigen cleavage, analysis of tumor antigen processing has revealed that epitopes may also derive from proteasome-catalyzed peptide splicing (PCPS). To determine whether PCPS contributes to epitope processing during infection, we analyzed the fragments produced by purified proteasomes from a Listeria monocytogenes polypeptide. Mass spectrometry identified a known H-2K(b) -presented linear epitope (LLO296-304 ) in the digests, as well as four spliced peptides that were trimmed by ERAP into peptides with in silico predicted H-2K(b) binding affinity. These spliced peptides, which displayed sequence similarity with LLO296-304 , bound to H-2K(b) molecules in cellular assays and one of the peptides was recognized by CD8(+) T cells of infected mice. This spliced epitope differed by one amino acid from LLO296-304 and double staining with LLO296-304 - and spliced peptide-folded MHC multimers showed that LLO296-304 and its spliced variant were recognized by the same CD8(+) T cells. Thus, PCPS multiplies the variety of peptides that is processed from an antigen and leads to the production of epitope variants that can be recognized by cross-reacting pathogen-specific CD8(+) T cells. Such mechanism may reduce the chances for pathogen immune evasion.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Listeria monocytogenes/inmunología , Listeriosis/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Complejo de la Endopetidasa Proteasomal/metabolismo , Empalme de Proteína , Animales , Presentación de Antígeno/inmunología , Simulación por Computador , Epítopos de Linfocito T/química , Antígenos de Histocompatibilidad Clase I/inmunología , Evasión Inmune , Listeria monocytogenes/química , Espectrometría de Masas , Ratones , Péptidos/química , Péptidos/inmunología , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/química
11.
Epilepsia ; 58 Suppl 3: 27-38, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28675563

RESUMEN

A large body of evidence that has accumulated over the past decade strongly supports the role of inflammation in the pathophysiology of human epilepsy. Specific inflammatory molecules and pathways have been identified that influence various pathologic outcomes in different experimental models of epilepsy. Most importantly, the same inflammatory pathways have also been found in surgically resected brain tissue from patients with treatment-resistant epilepsy. New antiseizure therapies may be derived from these novel potential targets. An essential and crucial question is whether targeting these molecules and pathways may result in anti-ictogenesis, antiepileptogenesis, and/or disease-modification effects. Therefore, preclinical testing in models mimicking relevant aspects of epileptogenesis is needed to guide integrated experimental and clinical trial designs. We discuss the most recent preclinical proof-of-concept studies validating a number of therapeutic approaches against inflammatory mechanisms in animal models that could represent novel avenues for drug development in epilepsy. Finally, we suggest future directions to accelerate preclinical to clinical translation of these recent discoveries.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia Refractaria/inmunología , Epilepsia/tratamiento farmacológico , Epilepsia/inmunología , Inflamación Neurogénica/tratamiento farmacológico , Inflamación Neurogénica/inmunología , Animales , Anticonvulsivantes/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Ensayos Clínicos como Asunto , Epilepsia Refractaria/diagnóstico , Drogas en Investigación/uso terapéutico , Epilepsia/diagnóstico , Humanos , Inflamación Neurogénica/diagnóstico
12.
J Biol Chem ; 290(51): 30417-28, 2015 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-26507656

RESUMEN

MHC class I-restricted epitopes, which carry a tumor-specific mutation resulting in improved MHC binding affinity, are preferred T cell receptor targets in innovative adoptive T cell therapies. However, T cell therapy requires efficient generation of the selected epitope. How such mutations may affect proteasome-mediated antigen processing has so far not been studied. Therefore, we analyzed by in vitro experiments the effect on antigen processing and recognition of a T210M exchange, which previously had been introduced into the melanoma gp100209-217 tumor epitope to improve the HLA-A*02:01 binding and its immunogenicity. A quantitative analysis of the main steps of antigen processing shows that the T210M exchange affects proteasomal cleavage site usage within the mutgp100201-230 polypeptide, leading to the generation of an unique set of cleavage products. The T210M substitution qualitatively affects the proteasome-catalyzed generation of spliced and non-spliced peptides predicted to bind HLA-A or -B complexes. The T210M substitution also induces an enhanced production of the mutgp100209-217 epitope and its N-terminally extended peptides. The T210M exchange revealed no effect on ERAP1-mediated N-terminal trimming of the precursor peptides. However, mutant N-terminally extended peptides exhibited significantly increased HLA-A*02:01 binding affinity and elicited CD8(+) T cell stimulation in vitro similar to the wtgp100209-217 epitope. Thus, our experiments demonstrate that amino acid exchanges within an epitope can result in the generation of an altered peptide pool with new antigenic peptides and in a wider CD8(+) T cell response also towards N-terminally extended versions of the minimal epitope.


Asunto(s)
Sustitución de Aminoácidos , Presentación de Antígeno/inmunología , Epítopos de Linfocito T/inmunología , Antígeno HLA-A2/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Antígeno gp100 del Melanoma/inmunología , Presentación de Antígeno/genética , Linfocitos T CD8-positivos/inmunología , Línea Celular Transformada , Línea Celular Tumoral , Epítopos de Linfocito T/genética , Antígeno HLA-A2/genética , Antígenos HLA-B/genética , Antígenos HLA-B/inmunología , Humanos , Complejo de la Endopetidasa Proteasomal/genética , Antígeno gp100 del Melanoma/genética
13.
Eur J Immunol ; 44(12): 3508-21, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25231383

RESUMEN

Immunoproteasomes are considered to be optimised to process Ags and to alter the peptide repertoire by generating a qualitatively different set of MHC class I epitopes. Whether the immunoproteasome at the biochemical level, influence the quality rather than the quantity of the immuno-genic peptide pool is still unclear. Here, we quantified the cleavage-site usage by human standard- and immunoproteasomes, and proteasomes from immuno-subunit-deficient mice, as well as the peptides generated from model polypeptides. We show in this study that the different proteasome isoforms can exert significant quantitative differences in the cleavage-site usage and MHC class I restricted epitope production. However, independent of the proteasome isoform and substrates studied, no evidence was obtained for the abolishment of the specific cleavage-site usage, or for differences in the quality of the peptides generated. Thus, we conclude that the observed differences in MHC class I restricted Ag presentation between standard- and immunoproteasomes are due to quantitative differences in the proteasome-generated antigenic peptides.


Asunto(s)
Presentación de Antígeno/fisiología , Antígenos de Histocompatibilidad Clase I/inmunología , Péptidos/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Proteolisis , Animales , Línea Celular Transformada , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Isoenzimas/genética , Isoenzimas/inmunología , Ratones , Ratones Mutantes , Péptidos/genética , Complejo de la Endopetidasa Proteasomal/genética , Especificidad por Sustrato/genética , Especificidad por Sustrato/inmunología
14.
Brain Behav Immun ; 49: 188-96, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26044087

RESUMEN

The proteasome is the core of the ubiquitin-proteasome system and is involved in synaptic protein metabolism. The incorporation of three inducible immuno-subunits into the proteasome results in the generation of the so-called immunoproteasome, which is endowed of pathophysiological functions related to immunity and inflammation. In healthy human brain, the expression of the key catalytic ß5i subunit of the immunoproteasome is almost absent, while it is induced in the epileptogenic foci surgically resected from patients with pharmaco-resistant seizures, including temporal lobe epilepsy. We show here that the ß5i immuno-subunit is induced in experimental epilepsy, and its selective pharmacological inhibition significantly prevents, or delays, 4-aminopyridine-induced seizure-like events in acute rat hippocampal/entorhinal cortex slices. These effects are stronger in slices from epileptic vs normal rats, likely due to the more prominent ß5i subunit expression in neurons and glia cells of diseased tissue. ß5i subunit is transcriptionally induced in epileptogenic tissue likely by Toll-like receptor 4 signaling activation, and independently on promoter methylation. The recent availability of selective ß5i subunit inhibitors opens up novel therapeutic opportunities for seizure inhibition in drug-resistant epilepsies.


Asunto(s)
Epilepsia/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Modelos Animales de Enfermedad , Corteza Entorrinal/fisiopatología , Epilepsia/fisiopatología , Hipocampo/fisiopatología , Masculino , Oligopéptidos/farmacología , Inhibidores de Proteasoma/farmacología , Subunidades de Proteína/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
15.
Mol Cell Proteomics ; 11(10): 1008-23, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22822185

RESUMEN

Proteasome-catalyzed peptide splicing (PCPS) represents an additional activity of mammalian 20S proteasomes recently identified in connection with antigen presentation. We show here that PCPS is not restricted to mammalians but that it is also a feature of yeast 20S proteasomes catalyzed by all three active site ß subunits. No major differences in splicing efficiency exist between human 20S standard- and immuno-proteasome or yeast 20S proteasome. Using H(2)(18)O to monitor the splicing reaction we also demonstrate that PCPS occurs via direct transpeptidation that slightly favors the generation of peptides spliced in cis over peptides spliced in trans. Splicing efficiency itself is shown to be controlled by proteasomal cleavage site preference as well as by the sequence characteristics of the spliced peptides. By use of kinetic data and quantitative analyses of PCPS obtained by mass spectrometry we developed a structural model with two PCPS binding sites in the neighborhood of the active Thr1.


Asunto(s)
Linfocitos B/metabolismo , Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Empalme de Proteína , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Linfocitos B/citología , Biocatálisis , Línea Celular Transformada , Cromatografía Liquida , Humanos , Datos de Secuencia Molecular , Péptidos/síntesis química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Nat Commun ; 15(1): 1147, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326304

RESUMEN

If and how proteasomes catalyze not only peptide hydrolysis but also peptide splicing is an open question that has divided the scientific community. The debate has so far been based on immunopeptidomics, in vitro digestions of synthetic polypeptides as well as ex vivo and in vivo experiments, which could only indirectly describe proteasome-catalyzed peptide splicing of full-length proteins. Here we develop a workflow-and cognate software - to analyze proteasome-generated non-spliced and spliced peptides produced from entire proteins and apply it to in vitro digestions of 15 proteins, including well-known intrinsically disordered proteins such as human tau and α-Synuclein. The results confirm that 20S proteasomes produce a sizeable variety of cis-spliced peptides, whereas trans-spliced peptides are a minority. Both peptide hydrolysis and splicing produce peptides with well-defined characteristics, which hint toward an intricate regulation of both catalytic activities. At protein level, both non-spliced and spliced peptides are not randomly localized within protein sequences, but rather concentrated in hotspots of peptide products, in part driven by protein sequence motifs and proteasomal preferences. At sequence level, the different peptide sequence preference of peptide hydrolysis and peptide splicing suggests a competition between the two catalytic activities of 20S proteasomes during protein degradation.


Asunto(s)
Péptidos , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Hidrólisis , Péptidos/metabolismo , Proteínas/metabolismo
17.
Sci Data ; 10(1): 18, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627305

RESUMEN

Noncanonical epitopes presented by Human Leucocyte Antigen class I (HLA-I) complexes to CD8+ T cells attracted the spotlight in the research of novel immunotherapies against cancer, infection and autoimmunity. Proteasomes, which are the main producers of HLA-I-bound antigenic peptides, can catalyze both peptide hydrolysis and peptide splicing. The prediction of proteasome-generated spliced peptides is an objective that still requires a reliable (and large) database of non-spliced and spliced peptides produced by these proteases. Here, we present an extended database of proteasome-generated spliced and non-spliced peptides, which was obtained by analyzing in vitro digestions of 80 unique synthetic polypeptide substrates, measured by different mass spectrometers. Peptides were identified through invitroSPI method, which was validated through in silico and in vitro strategies. The peptide product database contains 16,631 unique peptide products (5,493 non-spliced, 6,453 cis-spliced and 4,685 trans-spliced peptide products), and a substrate sequence variety that is a valuable source for predictors of proteasome-catalyzed peptide hydrolysis and splicing. Potential artefacts and skewed results due to different identification and analysis strategies are discussed.


Asunto(s)
Linfocitos T CD8-positivos , Complejo de la Endopetidasa Proteasomal , Humanos , Citoplasma , Antígenos de Histocompatibilidad Clase I , Péptidos/química
18.
ACS Omega ; 7(27): 23771-23781, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35847273

RESUMEN

Synthetic peptides are commonly used in biomedical science for many applications in basic and translational research. While peptide synthesis is generally easy and reliable, the chemical nature of some amino acids as well as the many steps and chemical compounds involved can render the synthesis of some peptide sequences difficult. Identification of these problematic sequences and mitigation of issues they may present can be important for the reliable use of peptide reagents in several contexts. Here, we assembled a large dataset of peptides that were synthesized using standard Fmoc chemistry and whose identity was validated using mass spectrometry. We analyzed the mass spectra to identify errors in peptide syntheses and sought to develop a computational tool to predict the likelihood that any given peptide sequence would be synthesized accurately. Our model, named Peptide Synthesis Score (PepSySco), is able to predict the likelihood that a peptide will be successfully synthesized based on its amino acid sequence.

19.
Biochem Biophys Res Commun ; 408(1): 65-70, 2011 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-21458417

RESUMEN

Immunoproteasome has been associated to neurodegenerative and autoimmune diseases as a marker and regulator of inflammatory mechanisms. Its expression in the brain may occur upon neuroinflammation in different cell types and affect a variety of homeostatic and inflammatory pathways including the oxidized protein clearance and the self-antigen presentation. In the present study we investigated the immunoproteasome expression in hippocampi and cortex of patients affected by different histopathological forms of pharmaco-resistent mesial temporal lobe epilepsy. We identified a pathology-specific pattern of immunoproteasome expression, which could provide insight into the complex neuroinflammatory pathogenic components of this disease.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Epilepsia del Lóbulo Temporal/inmunología , Hipocampo/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Complejo de la Endopetidasa Proteasomal/metabolismo , Adulto Joven
20.
PLoS Comput Biol ; 6(6): e1000830, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20613855

RESUMEN

The identification of proteasome-generated spliced peptides (PSP) revealed a new unpredicted activity of the major cellular protease. However, so far characterization of PSP was entirely dependent on the availability of patient-derived cytotoxic CD8+ T lymphocytes (CTL) thus preventing a systematic investigation of proteasome-catalyzed peptide splicing (PCPS). For an unrestricted PSP identification we here developed SpliceMet, combining the computer-based algorithm ProteaJ with in vitro proteasomal degradation assays and mass spectrometry. By applying SpliceMet for the analysis of proteasomal processing products of four different substrate polypeptides, derived from human tumor as well as viral antigens, we identified fifteen new spliced peptides generated by PCPS either by cis or from two separate substrate molecules, i.e., by trans splicing. Our data suggest that 20S proteasomes represent a molecular machine that, due to its catalytic and structural properties, facilitates the generation of spliced peptides, thereby providing a pool of qualitatively new peptides from which functionally relevant products may be selected.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Fragmentos de Péptidos/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Programas Informáticos , Secuencia de Aminoácidos , Antígenos Nucleares/química , Antígenos Nucleares/metabolismo , Autoantígenos/química , Autoantígenos/metabolismo , Linfocitos T CD8-positivos , Simulación por Computador , Bases de Datos de Proteínas , Epítopos de Linfocito T , Factor 5 de Crecimiento de Fibroblastos/química , Factor 5 de Crecimiento de Fibroblastos/metabolismo , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem , Antígeno gp100 del Melanoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA