Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurophysiol ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958285

RESUMEN

The relative contributions of proprioceptive, vestibular, and visual sensory cues to balance control change depending on their availability and reliability. This sensory reweighting is classically supported by non-linear sway responses to increasing visual surround and/or surface tilt amplitudes. However, recent evidence indicates that visual cues are reweighted based on visual tilt velocity rather than tilt amplitude. Therefore, we designed a study to specifically test the hypothesized velocity dependence of reweighting while expanding on earlier findings for visual reweighting by testing proprioceptive reweighting for standing balance on a tilting surface. Twenty healthy young adults stood with their eyes closed on a toes-up/-down tilting platform. We designed four pseudo-random tilt sequences with either a slow (S) or a fast (F) tilt velocity and different peak-to-peak amplitudes. We used model-based interpretations of measured sway characteristics to estimate the proprioceptive sensory weight (Wprop) within each trial. Additionally, root-mean-square values of measured body centre of mass sway amplitude (RMS) and velocity (RMSv) were calculated for each tilt sequence. Wprop, RMS, and RMSv values varied depending on the stimulus velocity, exhibiting large effects (all Cohen's d's > 1.10). In contrast, we observed no significant differences across stimulus amplitudes for Wprop (Cohen's d's: 0.02-0.16) and, compared to the differences in velocity, there were much smaller changes in RMS and RMSv values (Cohen's d's: 0.05 - 0.91). These results confirmed the hypothesized velocity, rather than amplitude, dependence of sensory reweighting.

2.
J Physiol ; 601(12): 2473-2492, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060169

RESUMEN

During unperturbed bipedal standing, postural control is governed primarily by subcortical and spinal networks. However, it is unclear if cortical networks begin to play a greater role when stability is threatened. This study investigated how initial and repeated exposure to a height-related postural threat modulates cortical potentials time-locked to discrete centre of pressure (COP) events during standing. Twenty-seven young adults completed a series of 90-s standing trials at LOW (0.8 m above the ground, away from edge) and HIGH (3.2 m above the ground, at edge) threat conditions. Three LOW trials were completed before and after 15 consecutive HIGH trials. Participants stood on a force plate while electroencephalographic (EEG) activity was recorded. To examine changes in cortical activity in response to discrete postural events, prominent forward and backward peaks in the anterior-posterior COP time series were identified. EEG data were waveform-averaged to these events and the amplitude of event-related cortical activity was calculated. At the LOW condition, event-related potentials (ERPs) were scarcely detectable. However, once individuals stood at the HIGH condition, clear ERPs were observed, with more prominent potentials being observed for forward (edge-directed), compared to backward, COP events. Since forward COP peaks accelerate the centre of mass away from the platform edge, these results suggest there is intermittent recruitment of cortical networks that may be involved in the detection and minimization of postural sway toward a perceived threat. This altered cortical engagement appears resistant to habituation and may contribute to threat-related balance changes that persist following repeated threat exposure. KEY POINTS: While standing balance control is regulated primarily by subcortical and spinal processes, it is unclear if cortical networks play a greater role when stability is threatened. This study examined how cortical potentials time-locked to prominent peaks in the anterior-posterior centre of pressure (COP) time series were modulated by exposure to a height-related postural threat. While cortical potentials recorded over the primary sensorimotor cortices were scarcely detectable under non-threatening conditions, clear cortical potentials were observed when individuals stood under conditions of height-related threat. Cortical potentials were larger in response to COP peaks directed toward, compared to away from, the platform edge, and showed limited habituation with repeated threat exposure. Since forward COP peaks accelerate the centre of mass away from the platform edge, these findings suggest that when balance is threatened, there is intermittent recruitment of cortical networks, which may minimize the likelihood of falling in the direction of a perceived threat.


Asunto(s)
Miedo , Posición de Pie , Adulto Joven , Humanos , Miedo/fisiología , Equilibrio Postural/fisiología , Factores de Tiempo
3.
J Neurophysiol ; 130(3): 585-595, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37492897

RESUMEN

It has been proposed that sensory force/pressure cues are integrated within a positive feedback mechanism, which accounts for the slow dynamics of human standing behavior and helps align the body with gravity. However, experimental evidence of this mechanism remains scarce. This study tested predictions of a positive torque feedback mechanism for standing balance, specifically that differences between a "reference" torque and actual torque are self-amplified, causing the system to generate additional torque. Seventeen healthy young adults were positioned in an apparatus that permitted normal sway at the ankle until a brake on the apparatus was applied, discreetly "locking" body movement during stance. Once locked, a platform positioned under the apparatus remained in place (0 mm) or slowly translated backward (3 mm or 6 mm), tilting subjects forward. Postural behavior was characterized by two distinct responses: the center of pressure (COP) offset (i.e., change in COP elicited by the surface translation) and the COP drift (i.e., change in COP during the sustained tilt). Model simulations were performed using a linear balance control model containing torque feedback to provide a conceptual basis for the interpretation of experimental results. Holding the body in sustained tilt positions resulted in COP drifting behavior, reflecting attempts of the balance control system to restore an upright position through increases in plantar flexor torque. In line with predictions of positive torque feedback, larger COP offsets led to faster increases in COP over time. These findings provide experimental support for a positive torque feedback mechanism involved in the control of standing balance.NEW & NOTEWORTHY Using model simulations and a novel experimental approach, we tested behavioral predictions of a sensory torque feedback mechanism involved in the control of upright standing. Torque feedback is thought to reduce the effort required to stand and play a functional role in slowly aligning the body with gravity. Our results provide experimental evidence of a torque feedback mechanism and offer new and valuable insights into the sensorimotor control of human balance.


Asunto(s)
Tobillo , Equilibrio Postural , Adulto Joven , Humanos , Retroalimentación , Torque , Movimiento , Retroalimentación Sensorial
4.
Sci Rep ; 13(1): 2594, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788259

RESUMEN

Sensory perturbations are a valuable tool to assess sensory integration mechanisms underlying balance. Implemented as systems-identification approaches, they can be used to quantitatively assess balance deficits and separate underlying causes. However, the experiments require controlled perturbations and sophisticated modeling and optimization techniques. Here we propose and validate a virtual reality implementation of moving visual scene experiments together with model-based interpretations of the results. The approach simplifies the experimental implementation and offers a platform to implement standardized analysis routines. Sway of 14 healthy young subjects wearing a virtual reality head-mounted display was measured. Subjects viewed a virtual room or a screen inside the room, which were both moved during a series of sinusoidal or pseudo-random room or screen tilt sequences recorded on two days. In a between-subject comparison of 10 [Formula: see text] 6 min long pseudo-random sequences, each applied at 5 amplitudes, our results showed no difference to a real-world moving screen experiment from the literature. We used the independent-channel model to interpret our data, which provides a direct estimate of the visual contribution to balance, together with parameters characterizing the dynamics of the feedback system. Reliability estimates of single subject parameters from six repetitions of a 6 [Formula: see text] 20-s pseudo-random sequence showed poor test-retest agreement. Estimated parameters show excellent reliability when averaging across three repetitions within each day and comparing across days (Intra-class correlation; ICC 0.7-0.9 for visual weight, time delay and feedback gain). Sway responses strongly depended on the visual scene, where the high-contrast, abstract screen evoked larger sway as compared to the photo-realistic room. In conclusion, our proposed virtual reality approach allows researchers to reliably assess balance control dynamics including the visual contribution to balance with minimal implementation effort.


Asunto(s)
Equilibrio Postural , Realidad Virtual , Humanos , Reproducibilidad de los Resultados , Equilibrio Postural/fisiología , Retroalimentación , Voluntarios Sanos
5.
Front Neurol ; 14: 1179237, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37342783

RESUMEN

Introduction: Postural threat elicits modifications to standing balance. However, the underlying neural mechanism(s) responsible remain unclear. Shifts in attention focus including directing more attention to balance when threatened may contribute to the balance changes. Sample entropy, a measure of postural sway regularity with lower values reflecting less automatic and more conscious control of balance, may support attention to balance as a mechanism to explain threat-induced balance changes. The main objectives were to investigate the effects of postural threat on sample entropy, and the relationships between threat-induced changes in physiological arousal, perceived anxiety, attention focus, sample entropy, and traditional balance measures. A secondary objective was to explore if biological sex influenced these relationships. Methods: Healthy young adults (63 females, 42 males) stood quietly on a force plate without (No Threat) and with (Threat) the expectation of receiving a postural perturbation (i.e., forward/backward support surface translation). Mean electrodermal activity and anterior-posterior centre of pressure (COP) sample entropy, mean position, root mean square, mean power frequency, and power within low (0-0.05 Hz), medium (0.5-1.8 Hz), and high-frequency (1.8-5 Hz) components were calculated for each trial. Perceived anxiety and attention focus to balance, task objectives, threat-related stimuli, self-regulatory strategies, and task-irrelevant information were rated after each trial. Results and Discussion: Significant threat effects were observed for all measures, except low-frequency sway. Participants were more physiologically aroused, more anxious, and directed more attention to balance, task objectives, threat-related stimuli, and self-regulatory strategies, and less to task-irrelevant information in the Threat compared to No Threat condition. Participants also increased sample entropy, leaned further forward, and increased the amplitude and frequency of COP displacements, including medium and high-frequency sway, when threatened. Males and females responded in the same way when threatened, except males had significantly larger threat-induced increases in attention to balance and high-frequency sway. A combination of sex and threat-induced changes in physiological arousal, perceived anxiety, and attention focus accounted for threat-induced changes in specific traditional balance measures, but not sample entropy. Increased sample entropy when threatened may reflect a shift to more automatic control. Directing more conscious control to balance when threatened may act to constrain these threat-induced automatic changes to balance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA