Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 158(3): 633-46, 2014 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-25083873

RESUMEN

ATR controls chromosome integrity and chromatin dynamics. We have previously shown that yeast Mec1/ATR promotes chromatin detachment from the nuclear envelope to counteract aberrant topological transitions during DNA replication. Here, we provide evidence that ATR activity at the nuclear envelope responds to mechanical stress. Human ATR associates with the nuclear envelope during S phase and prophase, and both osmotic stress and mechanical stretching relocalize ATR to nuclear membranes throughout the cell cycle. The ATR-mediated mechanical response occurs within the range of physiological forces, is reversible, and is independent of DNA damage signaling. ATR-defective cells exhibit aberrant chromatin condensation and nuclear envelope breakdown. We propose that mechanical forces derived from chromosome dynamics and torsional stress on nuclear membranes activate ATR to modulate nuclear envelope plasticity and chromatin association to the nuclear envelope, thus enabling cells to cope with the mechanical strain imposed by these molecular processes.


Asunto(s)
Membrana Nuclear/metabolismo , Estrés Mecánico , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Cromatina/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Ratones , Células 3T3 NIH , Ósmosis , Proteínas Quinasas/metabolismo
2.
Eur J Public Health ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905592

RESUMEN

BACKGROUND: Somatic and germline genetic alterations are significant drivers of cancer. Increasing integration of new technologies which profile these alterations requires timely, equitable and high-quality genetic counselling to facilitate accurate diagnoses and informed decision-making by patients and their families in preventive and clinical settings. This article aims to provide an overview of genetic counselling legislation and practice across European Union (EU) Member States to serve as a foundation for future European recommendations and action. METHODS: National legislative databases of all 27 Member States were searched using terms relevant to genetic counselling, translated as appropriate. Interviews with relevant experts from each Member State were conducted to validate legislative search results and provide detailed insights into genetic counselling practice in each country. RESULTS: Genetic counselling is included in national legislative documents of 22 of 27 Member States, with substantial variation in legal mechanisms and prescribed details (i.e. the 'who, what, when and where' of counselling). Practice is similarly varied. Workforce capacity (25 of 27 Member States) and genetic literacy (all Member States) were common reported barriers. Recognition and/or better integration of genetic counsellors and updated legislation and were most commonly noted as the 'most important change' which would improve practice. CONCLUSIONS: This review highlights substantial variability in genetic counselling across EU Member States, as well as common barriers notwithstanding this variation. Future recommendations and action should focus on addressing literacy and capacity challenges through legislative, regulatory and/or strategic approaches at EU, national, regional and/or local levels.

3.
Stem Cells ; 40(1): 35-48, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35511867

RESUMEN

DNA damage repair (DDR) is a safeguard for genome integrity maintenance. Increasing DDR efficiency could increase the yield of induced pluripotent stem cells (iPSC) upon reprogramming from somatic cells. The epigenetic mechanisms governing DDR during iPSC reprogramming are not completely understood. Our goal was to evaluate the splicing isoforms of histone variant macroH2A1, macroH2A1.1, and macroH2A1.2, as potential regulators of DDR during iPSC reprogramming. GFP-Trap one-step isolation of mtagGFP-macroH2A1.1 or mtagGFP-macroH2A1.2 fusion proteins from overexpressing human cell lines, followed by liquid chromatography-tandem mass spectrometry analysis, uncovered macroH2A1.1 exclusive interaction with Poly-ADP Ribose Polymerase 1 (PARP1) and X-ray cross-complementing protein 1 (XRCC1). MacroH2A1.1 overexpression in U2OS-GFP reporter cells enhanced specifically nonhomologous end joining (NHEJ) repair pathway, while macroH2A1.1 knock-out (KO) mice showed an impaired DDR capacity. The exclusive interaction of macroH2A1.1, but not macroH2A1.2, with PARP1/XRCC1, was confirmed in human umbilical vein endothelial cells (HUVEC) undergoing reprogramming into iPSC through episomal vectors. In HUVEC, macroH2A1.1 overexpression activated transcriptional programs that enhanced DDR and reprogramming. Consistently, macroH2A1.1 but not macroH2A1.2 overexpression improved iPSC reprogramming. We propose the macroH2A1 splicing isoform macroH2A1.1 as a promising epigenetic target to improve iPSC genome stability and therapeutic potential.


Asunto(s)
Histonas , Células Madre Pluripotentes Inducidas , Animales , ADN , Reparación del ADN , Células Endoteliales/metabolismo , Histonas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
4.
Nature ; 552(7684): 194-199, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29211715

RESUMEN

Cancer incidence is rising and this global challenge is further exacerbated by tumour resistance to available medicines. A promising approach to meet the need for improved cancer treatment is drug repurposing. Here we highlight the potential for repurposing disulfiram (also known by the trade name Antabuse), an old alcohol-aversion drug that has been shown to be effective against diverse cancer types in preclinical studies. Our nationwide epidemiological study reveals that patients who continuously used disulfiram have a lower risk of death from cancer compared to those who stopped using the drug at their diagnosis. Moreover, we identify the ditiocarb-copper complex as the metabolite of disulfiram that is responsible for its anti-cancer effects, and provide methods to detect preferential accumulation of the complex in tumours and candidate biomarkers to analyse its effect on cells and tissues. Finally, our functional and biophysical analyses reveal the molecular target of disulfiram's tumour-suppressing effects as NPL4, an adaptor of p97 (also known as VCP) segregase, which is essential for the turnover of proteins involved in multiple regulatory and stress-response pathways in cells.


Asunto(s)
Disuasivos de Alcohol , Alcoholismo/tratamiento farmacológico , Antineoplásicos , Disulfiram/farmacología , Disulfiram/uso terapéutico , Reposicionamiento de Medicamentos , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/metabolismo , Adulto , Disuasivos de Alcohol/farmacología , Disuasivos de Alcohol/uso terapéutico , Alcoholismo/epidemiología , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Cobre/química , Dinamarca/epidemiología , Disulfiram/química , Femenino , Respuesta al Choque Térmico/efectos de los fármacos , Humanos , Masculino , Ratones , Persona de Mediana Edad , Terapia Molecular Dirigida , Neoplasias/metabolismo , Neoplasias/mortalidad , Neoplasias/patología , Proteínas Nucleares/química , Agregado de Proteínas , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos
5.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36769206

RESUMEN

Cannabidiol (CBD) is an easily accessible and affordable Marijuana (Cannabis sativa L.) plant derivative with an extensive history of medical use spanning thousands of years. Interest in the therapeutic potential of CBD has increased in recent years, including its anti-tumour properties in various cancer models. In addition to the direct anticancer effects of CBD, preclinical research on numerous cannabinoids, including CBD, has highlighted their potential use in: (i) attenuating chemotherapy-induced adverse effects and (ii) enhancing the efficacy of some anticancer drugs. Therefore, CBD is gaining popularity as a supportive therapy during cancer treatment, often in combination with standard-of-care cancer chemotherapeutics. However, CBD is a biologically active substance that modulates various cellular targets, thereby possibly resulting in unpredictable outcomes, especially in combinations with other medications and therapeutic modalities. In this review, we summarize the current knowledge of CBD interactions with selected anticancer chemotherapeutics, discuss the emerging mechanistic basis for the observed biological effects, and highlight both the potential benefits and risks of such combined treatments. Apart from the experimental and preclinical results, we also indicate the planned or ongoing clinical trials aiming to evaluate the impact of CBD combinations in oncology. The results of these and future trials are essential to provide better guidance for oncologists to judge the benefit-versus-risk ratio of these exciting treatment strategies. We hope that our present overview of this rapidly advancing field of biomedicine will inspire more preclinical and clinical studies to further our understanding of the underlying biology and optimize the benefits for cancer patients.


Asunto(s)
Antineoplásicos , Cannabidiol , Cannabinoides , Cannabis , Neoplasias , Humanos , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Cannabinoides/uso terapéutico , Interacciones Farmacológicas , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
6.
BMC Cancer ; 21(1): 73, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33451293

RESUMEN

BACKGROUND: We have performed a head to head comparison of all-oral triplet combination of ixazomib, lenalidomide and dexamethasone (IRD) versus lenalidomide and dexamethasone (RD) in patients with relapsed and refractory multiple myeloma (RRMM) in the routine clinical practice. METHODS: A total of 344 patients treated with IRD (N = 127) or RD (N = 217) were selected for analysis from the Czech Registry of Monoclonal Gammopathies (RMG). Descriptive statistics were used to assess patient's characteristics associated with the respective therapy. The primary endpoint was progression free survival (PFS), secondary end points included response rates and overall survival (OS). Survival endpoints were plotted using Kaplan-Meier methodology at 95% Greenwood confidence interval. Univariable and multivariable Cox proportional hazards models were used to evaluate the effect of treatment regimens and the significance of uneven variables. Statistical tests were performed at significance level 0.05. RESULTS: In the whole cohort, median PFS for IRD was 17.5 and for RD was 11.5 months favoring the all-oral triplet, p = 0.005; in patients within relapse 1-3, the median PFS was 23.1 vs 11.6 months, p = 0.001. The hazard ratio for PFS was 0.67 (95% confidence interval [CI] 0.51-0.89, p = 0.006). The PFS advantage translated into improved OS for patients treated with IRD, median 36.6 months vs 26.0 months (p = 0.008). The overall response rate (ORR) was 73.0% in the IRD group vs 66.2% in the RD group with a complete response rate (CR) of 11.1% vs 8.8%, and very good partial response (VGPR) 22.2% vs 13.9%, IRD vs RD respectively. The IRD regimen was most beneficial in patients ≤75 years with ISS I, II, and in the first and second relapse. Patients with the presence of extramedullary disease did not benefit from IRD treatment (median PFS 6.5 months). Both regimens were well tolerated, and the incidence of total as well as grade 3/4 toxicities was comparable. CONCLUSIONS: Our analysis confirms the results of the TOURMALINE-MM1 study and shows benefit of all-oral triplet IRD treatment versus RD doublet. It demonstrates that the addition of ixazomib to RD improves key survival endpoints in patients with RRMM in a routine clinical setting.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Administración Oral , Adulto , Anciano , Anciano de 80 o más Años , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Compuestos de Boro/farmacología , Compuestos de Boro/uso terapéutico , República Checa/epidemiología , Dexametasona/farmacología , Dexametasona/uso terapéutico , Resistencia a Antineoplásicos , Femenino , Estudios de Seguimiento , Glicina/análogos & derivados , Glicina/farmacología , Glicina/uso terapéutico , Humanos , Estimación de Kaplan-Meier , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Masculino , Persona de Mediana Edad , Mieloma Múltiple/mortalidad , Mieloma Múltiple/patología , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/patología , Supervivencia sin Progresión , Estudios Prospectivos , Sistema de Registros/estadística & datos numéricos
7.
Nature ; 521(7553): 541-544, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25799992

RESUMEN

Error-free repair of DNA double-strand breaks (DSBs) is achieved by homologous recombination (HR), and BRCA1 is an important factor for this repair pathway. In the absence of BRCA1-mediated HR, the administration of PARP inhibitors induces synthetic lethality of tumour cells of patients with breast or ovarian cancers. Despite the benefit of this tailored therapy, drug resistance can occur by HR restoration. Genetic reversion of BRCA1-inactivating mutations can be the underlying mechanism of drug resistance, but this does not explain resistance in all cases. In particular, little is known about BRCA1-independent restoration of HR. Here we show that loss of REV7 (also known as MAD2L2) in mouse and human cell lines re-establishes CTIP-dependent end resection of DSBs in BRCA1-deficient cells, leading to HR restoration and PARP inhibitor resistance, which is reversed by ATM kinase inhibition. REV7 is recruited to DSBs in a manner dependent on the H2AX-MDC1-RNF8-RNF168-53BP1 chromatin pathway, and seems to block HR and promote end joining in addition to its regulatory role in DNA damage tolerance. Finally, we establish that REV7 blocks DSB resection to promote non-homologous end-joining during immunoglobulin class switch recombination. Our results reveal an unexpected crucial function of REV7 downstream of 53BP1 in coordinating pathological DSB repair pathway choices in BRCA1-deficient cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas Mad2/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Reparación del ADN por Recombinación , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/deficiencia , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Línea Celular , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos/genética , Histonas/metabolismo , Humanos , Cambio de Clase de Inmunoglobulina/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mad2/deficiencia , Proteínas Mad2/genética , Ratones , Proteínas Nucleares/metabolismo , Transactivadores/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina-Proteína Ligasas/metabolismo
8.
Neoplasma ; 68(3): 626-630, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33567854

RESUMEN

Real-world data on regimens for relapsed/refractory multiple myeloma (RRMM) are limited. Daratumumab in combination with bortezomib and dexamethasone is a promising new treatment. The aim of this analysis was to assess the outcomes of daratumumab-bortezomib-dexamethasone (DVd) combination for the treatment of patients with RRMM in a real-world setting. All consecutive RRMM patients who received at least two cycles of DVd treatment between December 2016 and July 2020 were identified. We analyzed the clinical characteristics and survival of 47 patients treated at 7 Slovak centers outside of the clinical trials. The median age was 65 years (range, 35 to 83). The median (range) number of lines of therapy per patient was 3 (2-6). All patients were previously exposed to PIs (proteasome inhibitors) and IMIDs (immunomodulatory drugs), the majority of patients (70.2%) had double refractory (IMIDs and PI) disease and 72.3% of patients were refractory to their last therapy. Most patients presented with high-risk characteristics, including 25.6% adverse cytogenetics and 25.5% extramedullary disease. The majority of patients responded with an overall response rate of 78%, we found complete response in 3, very good partial response in 22, partial response in 12, minor response or stable disease in 9, and progressive disease in 1 patient. After a median follow-up period of 8 months, the median progression-free survival was 10 months. There was a longer progression-free survival in those with 2 vs. >2 prior treatments, with equally good effectivity in standard-risk and high-risk cytogenetic groups. The adverse events were usually mild, none leading to permanent drug interruptions. Daratumumab-bortezomib-based combinations are efficacious and safe regimens in RRMM patients in the real-world setting. This is the first analysis in Slovakia addressing the DVd combination outside of the clinical trial setting.


Asunto(s)
Mieloma Múltiple , Anciano , Anticuerpos Monoclonales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Bortezomib/uso terapéutico , Dexametasona/uso terapéutico , Humanos , Mieloma Múltiple/tratamiento farmacológico , Eslovaquia
9.
Genes Dev ; 27(22): 2459-72, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24240236

RESUMEN

Cdc7 kinase regulates DNA replication. However, its role in DNA repair and recombination is poorly understood. Here we describe a pathway that stabilizes the human Cdc7-ASK (activator of S-phase kinase; also called Dbf4), its regulation, and its function in cellular responses to compromised DNA replication. Stalled DNA replication evoked stabilization of the Cdc7-ASK (Dbf4) complex in a manner dependent on ATR-Chk1-mediated checkpoint signaling and its interplay with the anaphase-promoting complex/cyclosome(Cdh1) (APC/C(Cdh1)) ubiquitin ligase. Mechanistically, Chk1 kinase inactivates APC/C(Cdh1) through degradation of Cdh1 upon replication block, thereby stabilizing APC/C(Cdh1) substrates, including Cdc7-ASK (Dbf4). Furthermore, motif C of ASK (Dbf4) interacts with the N-terminal region of RAD18 ubiquitin ligase, and this interaction is required for chromatin binding of RAD18. Impaired interaction of ASK (Dbf4) with RAD18 disables foci formation by RAD18 and hinders chromatin loading of translesion DNA polymerase η. These findings define a novel mechanism that orchestrates replication checkpoint signaling and ubiquitin-proteasome machinery with the DNA damage bypass pathway to guard against replication collapse under conditions of replication stress.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Replicación del ADN , Antígenos CD , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Cadherinas/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Estabilidad de Enzimas , Genes APC/fisiología , Células HEK293 , Células HeLa , Humanos , Unión Proteica , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
10.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799604

RESUMEN

Prostate cancer (PCa) is the second leading cause of cancer-related deaths in men in Western countries, and there is still an urgent need for a better understanding of PCa progression to inspire new treatment strategies. Skp2 is a substrate-recruiting component of the E3 ubiquitin ligase complex, whose activity is regulated through neddylation. Slug is a transcriptional repressor involved in the epithelial-to-mesenchymal transition, which may contribute to therapy resistance. Although Skp2 has previously been associated with a mesenchymal phenotype and prostate cancer progression, the relationship with Slug deserves further elucidation. We have previously shown that a high Gleason score (≥8) is associated with higher Skp2 and lower E-cadherin expression. In this study, significantly increased expression of Skp2, AR, and Slug, along with E-cadherin downregulation, was observed in primary prostate cancer in patients who already had lymph node metastases. Skp2 was slightly correlated with Slug and AR in the whole cohort (Rs 0.32 and 0.37, respectively), which was enhanced for both proteins in patients with high Gleason scores (Rs 0.56 and 0.53, respectively) and, in the case of Slug, also in patients with metastasis to lymph nodes (Rs 0.56). Coexpression of Skp2 and Slug was confirmed in prostate cancer tissues by multiplex immunohistochemistry and confocal microscopy. The same relationship between these two proteins was observed in three sets of prostate epithelial cell lines (PC3, DU145, and E2) and their mesenchymal counterparts. Chemical inhibition of Skp2, but not RNA interference, modestly decreased Slug protein in PC3 and its docetaxel-resistant subline PC3 DR12. Importantly, chemical inhibition of Skp2 by MLN4924 upregulated p27 and decreased Slug expression in PC3, PC3 DR12, and LAPC4 cells. Novel treatment strategies targeting Skp2 and Slug by the neddylation blockade may be promising in advanced prostate cancer, as recently documented for other aggressive solid tumors.


Asunto(s)
Proteína NEDD8/genética , Neoplasias de la Próstata/genética , Procesamiento Proteico-Postraduccional , Proteínas Quinasas Asociadas a Fase-S/genética , Factores de Transcripción de la Familia Snail/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Antineoplásicos/farmacología , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Ciclopentanos/farmacología , Docetaxel/farmacología , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Proteína NEDD8/metabolismo , Clasificación del Tumor , Células PC-3 , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Pirimidinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Proteínas Quinasas Asociadas a Fase-S/antagonistas & inhibidores , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo
11.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322336

RESUMEN

Survivin, as an antiapoptotic protein often overexpressed in cancer cells, is a logical target for potential cancer treatment. By overexpressing survivin, cancer cells can avoid apoptotic cell death and often become resistant to treatments, representing a significant obstacle in modern oncology. A survivin suppressor, an imidazolium-based compound known as YM-155, is nowadays studied as an attractive anticancer agent. Although survivin suppression by YM-155 is evident, researchers started to report that YM-155 is also an inducer of DNA damage introducing yet another anticancer mechanism of this drug. Moreover, the concentrations of YM-155 for DNA damage induction seems to be far lower than those needed for survivin inhibition. Understanding the molecular mechanism of action of YM-155 is of vital importance for modern personalized medicine involving the selection of responsive patients and possible treatment combinations. This review focuses mainly on the documented effects of YM-155 on DNA damage signaling pathways. It summarizes up to date literature, and it outlines the molecular mechanism of YM-155 action in the context of the DNA damage field.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , Imidazoles/farmacología , Naftoquinonas/farmacología , Animales , Daño del ADN/efectos de los fármacos , Humanos , Survivin/metabolismo
12.
Cas Lek Cesk ; 159(2): 88-92, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32434342

RESUMEN

Cellular senescence is a physiological state generally defined as a stable arrest of proliferation by preventing the cells from cycling. Unlike terminally differentiated cells, that also do not show proliferative activity, cellular senescence is stress induced and blocks the proliferation of cells with theoretical ability to divide (such as progenitor, stem or cancer cells) due to the activity of specific signaling pathways. The number of senescent cells increases during the ontogenesis of an organism. Senescent cells are not only associated with aging, but also significantly influence this process - a fact that is becoming increasingly well documented.


Asunto(s)
Envejecimiento , Senescencia Celular
13.
Vnitr Lek ; 66(4): 214-224, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32972178

RESUMEN

Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia that is characterised by Philadelphia chromosome (Ph1 chromosome) and/or fusion gene BCR-ABL1 in bone marrow. Interpheron α and bone marrow transplantation used to be the main treatment modalities for patients with CML 20 years ago. Due to the introduction of imatinib mesylate since the year 2000 the outcome of CML patients has dramatically improved. The survival of both younger and elderly patients in the case of an optimal response has been prolonged and currently is close to survival of healthy population. Although, one third of patients does not respond well to first line imatinib and needs to change the treatment to second line tyrosine kinase inhibitors (TKI: bosutinib, dasatinib and nilotinib). Younger patients without cardiologic and metabolic disorders and those with poor risk profile score may have benefit from TKI of 2nd generation as a 1st line treatment option with the aim of reaching deeper molecular response and the chance of treatment free remission (TFR) in future. By older patients with severe comorbidities and in patients with good risk profile score imatinib as a 1st line treatment option can be used. For patients who are resistant simultaneously to 2nd generation TKI and for patients with mutation T315I ponatinib - TKI of 3rd generation can be used effectively. Intolerance and toxicity of TKI´s are the main barriers of effective CML treatment. TKI selection for each patient should be individual. Patient´s cooperation with medical team is crucial and inevitable in long time treatment process. The chance for TFR has become feasible for approximately 40-60 % CML patients in deep and durable molecular remission and represents a further important milestone in the management of CML patients.


Asunto(s)
Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva , Adulto , Anciano , Antineoplásicos/uso terapéutico , Dasatinib/uso terapéutico , Proteínas de Fusión bcr-abl/genética , Proteínas de Fusión bcr-abl/uso terapéutico , Humanos , Mesilato de Imatinib/uso terapéutico , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Inhibidores de Proteínas Quinasas/uso terapéutico
14.
Prostate ; 79(4): 352-362, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30499118

RESUMEN

BACKGROUND: Castration-resistant prostate cancer (PCa) represents a serious health challenge. Based on mechanistically-supported rationale we explored new therapeutic options based on clinically available drugs with anticancer effects, including inhibitors of PARP1 enzyme (PARPi), and histone deacetylases (vorinostat), respectively, and disulfiram (DSF, known as alcohol-abuse drug Antabuse) and its copper-chelating metabolite CuET that inhibit protein turnover. METHODS: Drugs and their combination with ionizing radiation (IR) were tested in various cytotoxicity assays in three human PCa cell lines including radio-resistant stem-cell like derived cells. Mechanistically, DNA damage repair, heat shock and unfolded protein response (UPR) pathways were assessed by immunofluorescence and immunoblotting. RESULTS: We observed enhanced sensitivity to PARPi/IR in PC3 cells consistent with lower homologous recombination (HR) repair. Vorinostat sensitized DU145 cells to PARPi/IR and decreased mutant p53. Vorinostat also impaired HR-mediated DNA repair, as determined by Rad51 foci formation and downregulation of TOPBP1 protein, and overcame radio-resistance of stem-cell like DU145-derived cells. All PCa models responded well to CuET or DSF combined with copper. We demonstrated that DSF interacts with copper in the culture media and forms adequate levels of CuET indicating that DSF/copper and CuET may be considered as comparable treatments. Both DSF/copper and CuET evoked hallmarks of UPR in PCa cells, documented by upregulation of ATF4, CHOP and phospho-eIF2α, with ensuing heat shock response encompassing activation of HSF1 and HSP70. Further enhancing the cytotoxicity of CuET, combination with an inhibitor of the anti-apoptotic protein survivin (YM155, currently undergoing clinical trials) promoted the UPR-induced toxicity, yielding synergistic effects of CuET and YM155. CONCLUSIONS: We propose that targeting genotoxic and proteotoxic stress responses by combinations of available drugs could inspire innovative strategies to treat castration-resistant PCa.


Asunto(s)
Disulfiram/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Vorinostat/uso terapéutico , Línea Celular Tumoral , Reparación del ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Terapia Molecular Dirigida/métodos , Células PC-3 , Fosfohidrolasa PTEN/genética , Tolerancia a Radiación , Reparación del ADN por Recombinación/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Proteína p53 Supresora de Tumor/genética
16.
Tumour Biol ; 39(10): 1010428317727479, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29025359

RESUMEN

A broad spectrum of tumors develop resistance to classic chemotherapy, necessitating the discovery of new therapies. One successful strategy exploits the synthetic lethality between poly(ADP-ribose) polymerase 1/2 proteins and DNA damage response genes, including BRCA1, a factor involved in homologous recombination-mediated DNA repair, and CDK12, a transcriptional kinase known to regulate the expression of DDR genes. CHK1 inhibitors have been shown to enhance the anti-cancer effect of DNA-damaging compounds. Since loss of BRCA1 increases replication stress and leads to DNA damage, we tested a hypothesis that CDK12- or BRCA1-depleted cells rely extensively on S-phase-related CHK1 functions for survival. The silencing of BRCA1 or CDK12 sensitized tumor cells to CHK1 inhibitors in vitro and in vivo. BRCA1 downregulation combined with CHK1 inhibition induced excessive amounts of DNA damage, resulting in an inability to complete the S-phase. Therefore, we suggest CHK1 inhibition as a strategy for targeting BRCA1- or CDK12-deficient tumors.


Asunto(s)
Proteína BRCA1/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Neoplasias Colorrectales/genética , Quinasas Ciclina-Dependientes/genética , Animales , Proteína BRCA1/antagonistas & inhibidores , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Células HCT116 , Humanos , Ratones , Poli(ADP-Ribosa) Polimerasa-1/genética , Pirazoles/administración & dosificación , Pirimidinas/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Clin Chem Lab Med ; 55(8): 1168-1177, 2017 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-28107167

RESUMEN

BACKGROUND: Liver enzymes are released from hepatocytes into circulation and their activity can be measured in the blood. We examined whether the plasma activity of the liver enzyme ornithine carbamoyltransferase, determined by a novel liquid chromatography-mass spectrometry (LC-MS/MS) assay, could be utilized for the detection of OTC deficiency (OTCD), an X-linked inborn error of the urea cycle. METHODS: The plasma ornithine carbamoyltransferase (OTC) activity was assayed in the reverse reaction using isotopically labeled citrulline-d4 as a substrate and by determination of the product, ornithine-d4, by LC-MS/MS analysis. RESULTS: The plasma OTC activity in the controls was in the range of 111-658 pkat/L (n=49, median 272 pkat/L), and the activity increased linearly with serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in patients with hepatopathy. The OTC activity was subsequently determined in 32 individuals carrying mutations in the OTC gene, and OTC/ALT and OTC/AST ratios were calculated to account for the degree of hepatopathy, which is a common finding in OTCD. The OTC/ALT ratio enabled clear differentiation of OTCD hemizygotes (n=11, range 0-69×10-6) from controls (504-3440×10-6). This ratio also enabled the detection of 11 of 12 symptomatic heterozygotes (range 38-794×10-6), while this marker did not allow for reliable differentiation of asymptomatic heterozygotes (n=9) from controls. CONCLUSIONS: LC-MS/MS assay of plasma OTC activity enabled the detection of all hemizygous and the majority of symptomatic heterozygous OTCD patients in the tested cohort. This study demonstrates that non-invasive assay of enzymes expressed predominantly in the liver could be used as an alternative approach for diagnosing inborn errors of metabolism.


Asunto(s)
Pruebas de Enzimas/métodos , Hígado/enzimología , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/sangre , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Ornitina Carbamoiltransferasa/sangre , Calibración , Cromatografía Liquida , Cromosomas Humanos X/genética , Estudios de Cohortes , Estabilidad de Enzimas , Femenino , Heterocigoto , Humanos , Modelos Lineales , Masculino , Mutación , Ornitina Carbamoiltransferasa/genética , Ornitina Carbamoiltransferasa/metabolismo , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/enzimología , Espectrometría de Masas en Tándem
18.
PLoS Genet ; 10(2): e1004088, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516397

RESUMEN

Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm) allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.


Asunto(s)
Emparejamiento Cromosómico/genética , Sitios Genéticos/genética , N-Metiltransferasa de Histona-Lisina/genética , Infertilidad Masculina/genética , Cromosoma X/genética , Animales , Femenino , Humanos , Hibridación Genética , Masculino , Meiosis , Ratones , Sitios de Carácter Cuantitativo/genética , Aislamiento Reproductivo , Complejo Sinaptonémico/genética
19.
J Proteome Res ; 15(12): 4505-4517, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27794614

RESUMEN

Replication stress (RS) fuels genomic instability and cancer development and may contribute to aging, raising the need to identify factors involved in cellular responses to such stress. Here, we present a strategy for identification of factors affecting the maintenance of common fragile sites (CFSs), which are genomic loci that are particularly sensitive to RS and suffer from increased breakage and rearrangements in tumors. A DNA probe designed to match the high flexibility island sequence typical for the commonly expressed CFS (FRA16D) was used as specific DNA affinity bait. Proteins significantly enriched at the FRA16D fragment under normal and replication stress conditions were identified using stable isotope labeling of amino acids in cell culture-based quantitative mass spectrometry. The identified proteins interacting with the FRA16D fragment included some known CFS stabilizers, thereby validating this screening approach. Among the hits from our screen so far not implicated in CFS maintenance, we chose Xeroderma pigmentosum protein group C (XPC) for further characterization. XPC is a key factor in the DNA repair pathway known as global genomic nucleotide excision repair (GG-NER), a mechanism whose several components were enriched at the FRA16D fragment in our screen. Functional experiments revealed defective checkpoint signaling and escape of DNA replication intermediates into mitosis and the next generation of XPC-depleted cells exposed to RS. Overall, our results provide insights into an unexpected biological role of XPC in response to replication stress and document the power of proteomics-based screening strategies to elucidate mechanisms of pathophysiological significance.


Asunto(s)
Reparación del ADN/fisiología , Replicación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , Proteómica/métodos , Puntos de Control del Ciclo Celular , Cromatografía de Afinidad , Sitios Frágiles del Cromosoma , Humanos , Xerodermia Pigmentosa
20.
Semin Thromb Hemost ; 42(5): 550-62, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27235830

RESUMEN

UNLABELLED: We present 25-year experience with inhibitors in previously untreated patients (PUPs) with severe hemophilia A in Slovakia, where safe factor VIII (FVIII) concentrates have been used since 1990. A prospective study focused on inhibitor incidence in PUPs was established in 1997. Out of a total 61 PUPs born between January 1997 and October 2015, 59 were eligible for evaluation; 50 and 9 were treated with > 20 exposure days (ED) of plasma-derived FVIII (pdFVIII) and recombinant FVIII (rFVIII) products, respectively. In the entire group 13/59 (22%) PUPs developed inhibitors; i.e. 7/50 (14%) and 6/9 (67%) treated with pdFVIII and rFVIII, respectively. Univariate analysis of inhibitor risk factors in patient groups with and without inhibitors showed the rFVIII and serious/recurrent infections within the first 50 EDs to be associated with inhibitor development (OR of 12.3 [95% CI 2.48-60.83; p = 0.002] and 5.0; [95% CI 1.16-21.9; p = 0.03), respectively]). Also, in multivariate Cox regression analysis, peak treatment ≥ 5 EDs reached statistical significance. The hazard ratio (HR) was 7.15 (95% CI 1.65-31.36) p = 0.0086 for rFVIII and 4.38 (95% CI 1.02-18.67) p = 0.046 for intensive treatment. Between 1993 and 2015, 21 immune tolerance inductions (ITIs) in 19 inhibitor patients were performed in the two largest hemophilia centers in Slovakia. In all but one ITI courses pdFVIII containing von Willebrand factor (FVIII/VWF) was used with preferred use of high-dose ITI (HD ITI) in high responders (HRs). Complete or partial success was achieved in 17/19 (89.5%) patients. Evaluating only the patients who already completed ITI, the success rate was even higher (15/16; 94%), including 7/7 low responders and 8/9 HR. CONCLUSION: Our national prospective study comprising entire group of PUPs with severe hemophilia A showed higher incidence of inhibitors in patients treated with rFVIII and those with intensive therapy within first 50 EDs. However, our experience is limited to small numbers of patients; thus, our results must be interpreted cautiously. High success rate of the ITI in our inhibitor patients has been achieved with FVIII/VWF concentrates and preferred use of HD ITI in HR patients.


Asunto(s)
Inhibidores de Factor de Coagulación Sanguínea/sangre , Factor VIII/administración & dosificación , Factor VIII/efectos adversos , Hemofilia A/sangre , Hemofilia A/tratamiento farmacológico , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Estudios Retrospectivos , Factores de Riesgo , Índice de Severidad de la Enfermedad , Eslovaquia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA