Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Res ; 197: 111038, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33745934

RESUMEN

Exposure to air pollution poses a significant risk to children's health. However, there is not currently a full and clear understanding of how many schools in England are in locations with high concentrations of air pollutants, and few studies have examined potential associations between air quality outside schools and socio-economic inequalities. To address these gaps, in this part of our study we used modelled air pollution concentrations, as well as monitoring data, to estimate how many schools in England are co-located with levels of annual mean PM2.5 that exceed the WHO recommended annual mean limit of 10 µgm-3, and matched school annual mean PM2.5 concentrations to inequality metrics. We assessed the limitations of our methodology by carrying out a sensitivity analysis using a small patch of high-resolution air pollution data generated using a data extrapolation method. Mapping of modelled annual mean concentrations at school locations indicates that around 7800 schools in England - over a third of schools - are in areas where annual mean PM2.5 in 2017 exceeded the WHO recommended guideline (10 µgm-3). Currently over 3.3 million pupils are attending these schools. We also found that air pollution outside schools is likely to be compounding existing childhood socio-economic disadvantage. Schools in areas with high annual mean PM2.5 levels (>12 µgm-3) had a significantly higher median intake of pupils on free school meals (17.8%) compared to schools in low PM2.5 areas (<6 µgm-3 PM2.5, 6.5% on free school meals). Schools in the highest PM2.5 concentration range had significantly higher ethnic minority pupil proportion (78.3%) compared to schools in the lowest concentration range (6.8%). We also found that in major urban conurbations, ethnically diverse schools with high PM2.5 concentrations are more likely to be near major roads, and less likely to be near significant greenspace, compared to less ethnically diverse schools in areas with lower PM2.5 levels.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Niño , Inglaterra , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Etnicidad , Humanos , Grupos Minoritarios , Material Particulado/análisis , Instituciones Académicas
2.
Environ Res ; 196: 110817, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33524334

RESUMEN

Children are particularly vulnerable to the detrimental health impacts of poor air quality. In the UK, recent initiatives at local council level have focussed on mitigating children's air pollution exposure at school. However, an overview of the available evidence on concentration and exposure in school environments - and a summary of key knowledge gaps - has so far been lacking. To address this, we conducted a review bringing together recent academic and grey literature, relating to air quality in outdoor school environments - including playgrounds, drop-off zones, and the school commute - across high-income countries. We aimed to critically assess, synthesise, and categorise the available literature, to produce recommendations on future research and mitigating actions. Our searches initially identified 883 articles of interest, which were filtered down in screening and appraisal to a final total of 100 for inclusion. Many of the included studies focussed on nitrogen dioxide (NO2), and particulate matter (PM) in both the coarse and fine fractions, around schools across a range of countries. Some studies also observed ozone (O3) and volatile organic compounds (VOCs) outside schools. Our review identified evidence that children can encounter pollution peaks on the school journey, at school gates, and in school playgrounds; that nearby traffic is a key determinant of concentrations outside schools; and that factors relating to planning and urban design - such as the type of playground paving, and amount of surrounding green space - can influence school site concentrations. The review also outlines evidence gaps that can be targeted in future research. These include the need for more personal monitoring studies that distinguish between the exposure that takes place indoors and outdoors at school, and a need for a greater number of studies that conduct before-after evaluation of local interventions designed to mitigate children's exposure, such as green barriers and road closures. Finally, our review also proposes some tangible recommendations for policymakers and local leaders. The creation of clean air zones around schools; greening of school grounds; careful selection of new school sites; promotion of active travel to and from school; avoidance of major roads on the school commute; and scheduling of outdoor learning and play away from peak traffic hours, are all advocated by the evidence collated in this review.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Niño , Países Desarrollados , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Instituciones Académicas
3.
Health Res Policy Syst ; 18(1): 18, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054540

RESUMEN

BACKGROUND: Population health measurements are recognised as appropriate tools to support public health monitoring. Yet, there is still a lack of tools that offer a basis for policy appraisal and for foreseeing impacts on health equity. In the context of persistent regional inequalities, it is critical to ascertain which regions are performing best, which factors might shape future health outcomes and where there is room for improvement. METHODS: Under the EURO-HEALTHY project, tools combining the technical elements of multi-criteria value models and the social elements of participatory processes were developed to measure health in multiple dimensions and to inform policies. The flagship tool is the Population Health Index (PHI), a multidimensional measure that evaluates health from the lens of equity in health determinants and health outcomes, further divided into sub-indices. Foresight tools for policy analysis were also developed, namely: (1) scenarios of future patterns of population health in Europe in 2030, combining group elicitation with the Extreme-World method and (2) a multi-criteria evaluation framework informing policy appraisal (case study of Lisbon). Finally, a WebGIS was built to map and communicate the results to wider audiences. RESULTS: The Population Health Index was applied to all European Union (EU) regions, indicating which regions are lagging behind and where investments are most needed to close the health gap. Three scenarios for 2030 were produced - (1) the 'Failing Europe' scenario (worst case/increasing inequalities), (2) the 'Sustainable Prosperity' scenario (best case/decreasing inequalities) and (3) the 'Being Stuck' scenario (the EU and Member States maintain the status quo). Finally, the policy appraisal exercise conducted in Lisbon illustrates which policies have higher potential to improve health and how their feasibility can change according to different scenarios. CONCLUSIONS: The article makes a theoretical and practical contribution to the field of population health. Theoretically, it contributes to the conceptualisation of health in a broader sense by advancing a model able to integrate multiple aspects of health, including health outcomes and multisectoral determinants. Empirically, the model and tools are closely tied to what is measurable when using the EU context but offering opportunities to be upscaled to other settings.


Asunto(s)
Equidad en Salud/organización & administración , Encuestas Epidemiológicas/normas , Administración en Salud Pública/normas , Ambiente , Europa (Continente)/epidemiología , Femenino , Conductas Relacionadas con la Salud , Equidad en Salud/normas , Política de Salud , Accesibilidad a los Servicios de Salud/normas , Disparidades en el Estado de Salud , Indicadores de Salud , Humanos , Estilo de Vida , Masculino , Formulación de Políticas , Seguridad , Determinantes Sociales de la Salud/normas , Factores Socioeconómicos
4.
Environ Sci Technol ; 50(21): 11760-11768, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27706935

RESUMEN

Here we describe the development of the London Hybrid Exposure Model (LHEM), which calculates exposure of the Greater London population to outdoor air pollution sources, in-buildings, in-vehicles, and outdoors, using survey data of when and where people spend their time. For comparison and to estimate exposure misclassification we compared Londoners LHEM exposure with exposure at the residential address, a commonly used exposure metric in epidemiological research. In 2011, the mean annual LHEM exposure to outdoor sources was estimated to be 37% lower for PM2.5 and 63% lower for NO2 than at the residential address. These decreased estimates reflect the effects of reduced exposure indoors, the amount of time spent indoors (∼95%), and the mode and duration of travel in London. We find that an individual's exposure to PM2.5 and NO2 outside their residential address is highly correlated (Pearson's R of 0.9). In contrast, LHEM exposure estimates for PM2.5 and NO2 suggest that the degree of correlation is influenced by their exposure in different transport modes. Further development of the LHEM has the potential to increase the understanding of exposure error and bias in time-series and cohort studies and thus better distinguish the independent effects of NO2 and PM2.5.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminación del Aire , Humanos , Londres , Modelos Teóricos
5.
Environ Pollut ; 336: 122465, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37640226

RESUMEN

The estimated health effects of air pollution vary between studies, and this variation is caused by factors associated with the study location, hereafter termed regional heterogeneity. This heterogeneity raises a methodological question as to which studies should be used to estimate risks in a specific region in a health impact assessment. Should one use all studies across the world, or only those in the region of interest? The current study provides novel insight into this question in two ways. Firstly, it presents an up-to-date analysis examining the magnitude of continent-level regional heterogeneity in the short-term health effects of air pollution, using a database of studies collected by Orellano et al. (2020). Secondly, it provides in-depth simulation analyses examining whether existing meta-analyses are likely to be underpowered to identify statistically significant regional heterogeneity, as well as evaluating which meta-analytic technique is best for estimating region-specific estimates. The techniques considered include global and continent-specific (sub-group) random effects meta-analysis and meta-regression, with omnibus statistical tests used to quantify regional heterogeneity. We find statistically significant regional heterogeneity for 4 of the 8 pollutant-outcome pairs considered, comprising NO2, O3 and PM2.5 with all-cause mortality, and PM2.5 with cardiovascular mortality. From the simulation analysis statistically significant regional heterogeneity is more likely to be identified as the number of studies increases (between 3 and 30 in each region were considered), between region heterogeneity increases and within region heterogeneity decreases. Finally, while a sub-group analysis using Cochran's Q test has a higher median power (0.71) than a test based on the moderators' coefficients from meta-regression (0.59) to identify regional heterogeneity, it also has an inflated type-1 error leading to more false positives (median errors of 0.15 compared to 0.09).


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Evaluación del Impacto en la Salud , Contaminación del Aire/análisis , Bases de Datos Factuales , Material Particulado/análisis , Exposición a Riesgos Ambientales/análisis
6.
Environ Int ; 178: 108046, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37393725

RESUMEN

Exposure to ambient ozone (O3) O3 is associated with impacts on human health. O3 is a secondary pollutant whose concentrations are determined inter alia by emissions of precursors such as oxides of nitrogen (NOx) and volatile organic compounds (VOCs), and thus future health burdens depend on policies relating to climate and air quality. While emission controls are expected to reduce levels of PM2.5 and NO2 and their associated mortality burdens, for secondary pollutants like O3 the picture is less clear. Detailed assessments are necessary to provide quantitative estimates of future impacts to support decision-makers. We simulate future O3 across the UK using a high spatial resolution atmospheric chemistry model with current UK and European policy projections for 2030, 2040 and 2050, and use UK regional population-weighting and latest recommendations on health impact assessment to quantify respiratory emergency hospital admissions associated with short-term effects of O3. We estimate 60,488 admissions in 2018, increasing by 4.2%, 4.5% and 4.6% by 2030, 2040 and 2050 respectively (assuming a fixed population). Including future population growth, estimated emergency respiratory hospital admissions are 8.3%, 10.3% and 11.7% higher by 2030, 2040 and 2050 respectively. Increasing O3 concentrations in future are driven by reduced nitric oxide (NO) in urban areas due to reduced emissions, with increases in O3 mainly occurring in areas with lowest O3 concentrations currently. Meteorology influences episodes of O3 on a day-to-day basis, although a sensitivity study indicates that annual totals of hospital admissions are only slightly impacted by meteorological year. While reducing emissions results in overall benefits to population health (through reduced mortality due to long-term exposure to PM2.5 and NO2), due to the complex chemistry, as NO emissions reduce there are associated local increases in O3 close to population centres that may increase harms to health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Ozono , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Dióxido de Nitrógeno , Contaminación del Aire/análisis , Ozono/análisis , Óxido Nítrico , Reino Unido , Hospitales , Monitoreo del Ambiente/métodos
7.
Environ Int ; 174: 107862, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36963156

RESUMEN

Air pollution is the greatest environmental risk to public health. Future air pollution concentrations are primarily determined by precursor emissions, which are driven by environmental policies relating to climate and air pollution. Detailed health impact assessments (HIA) are necessary to provide quantitative estimates of the impacts of future air pollution to support decision-makers developing environmental policy and targets. In this study we use high spatial resolution atmospheric chemistry modelling to simulate future air pollution concentrations across the UK for 2030, 2040 and 2050 based on current UK and European policy projections. We combine UK regional population-weighted concentrations with the latest epidemiological relationships to quantify mortality associated with changes in PM2.5 and NO2 air pollution. Our HIA suggests that by 2050, population-weighted exposure to PM2.5 will reduce by 28% to 36%, and for NO2 by 35% to 49%, depending on region. The HIA shows that for present day (2018), annual mortality attributable to the effects of long-term exposure to PM2.5 and NO2 is in the range 26,287 - 42,442, and that mortality burdens in future will be substantially reduced, being lower by 31%, 35%, and 37% in 2030, 2040 and 2050 respectively (relative to 2018) assuming no population changes. Including population projections (increases in all regions for 30+ years age group) slightly offsets these health benefits, resulting in reductions of 25%, 27%, and 26% in mortality burdens for 2030, 2040, 2050 respectively. Significant reductions in future mortality burdens are estimated and, importantly for public health, the majority of benefits are achieved early on in the future timeline simulated, though further efforts are likely needed to reduce impacts of air pollution to health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Políticas , Material Particulado/efectos adversos , Material Particulado/análisis , Reino Unido/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
8.
Artículo en Inglés | MEDLINE | ID: mdl-35010834

RESUMEN

High NO2 concentrations (long term average of 383 µg/m3 in 2016/2017) recorded at Birmingham New Street railway station have resulted in the upgrade of the bi-directional fan system to aid wind dispersion within the enclosed platform environment. This paper attempts to examine how successful this intervention has been in improving air quality for both passengers and workers within the station. New air pollution data in 2020 has enabled comparisons to the 2016/2017 monitoring campaign revealing a 23-42% decrease in measured NO2 concentrations. The new levels of NO2 are below the Occupational Health standards but still well above the EU Public Health Standards. This reduction, together with a substantial decrease (up to 81%) in measured Particulate Matter (PM) concentrations, can most likely be attributed to the new fan system effectiveness. Carbon Monoxide levels were well below Occupational and Public Health Standards at all times. The COVID-19 pandemic "initial lockdown" period has also allowed an insight into the resultant air quality at lower rail-traffic intensities, which produced a further reduction in air pollutants, to roughly half the pre-lockdown concentrations. This study shows the scope of improvement that can be achieved through an engineering solution implemented to improve the ventilation system of an enclosed railway station. Further reduction in air pollution would require additional approaches, such as the removal of diesel engine exhaust emissions via the adoption of electric or diesel-electric hybrid powered services.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Pandemias , Material Particulado/análisis , SARS-CoV-2 , Emisiones de Vehículos/análisis
9.
Artículo en Inglés | MEDLINE | ID: mdl-30866549

RESUMEN

The different geographical contexts seen in European metropolitan areas are reflected in the uneven distribution of health risk factors for the population. Accumulating evidence on multiple health determinants point to the importance of individual, social, economic, physical and built environment features, which can be shaped by the local authorities. The complexity of measuring health, which at the same time underscores the level of intra-urban inequalities, calls for integrated and multidimensional approaches. The aim of this study is to analyse inequalities in health determinants and health outcomes across and within nine metropolitan areas: Athens, Barcelona, Berlin-Brandenburg, Brussels, Lisbon, London, Prague, Stockholm and Turin. We use the EURO-HEALTHY Population Health Index (PHI), a tool that measures health in two components: Health Determinants and Health Outcomes. The application of this tool revealed important inequalities between metropolitan areas: Better scores were found in Northern cities when compared with their Southern and Eastern counterparts in both components. The analysis of geographical patterns within metropolitan areas showed that there are intra-urban inequalities, and, in most cities, they appear to form spatial clusters. Identifying which urban areas are measurably worse off, in either Health Determinants or Health Outcomes, or both, provides a basis for redirecting local action and for ongoing comparisons with other metropolitan areas.


Asunto(s)
Disparidades en el Estado de Salud , Adulto , Ciudades/epidemiología , Europa (Continente)/epidemiología , Femenino , Geografía , Humanos , Salud Poblacional , Factores de Riesgo
10.
Sci Total Environ ; 658: 1630-1639, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30678019

RESUMEN

Urban areas in Europe are facing a range of environmental public health challenges, such as air pollution, traffic noise and road injuries. The identification and quantification of the public health risks associated with exposure to environmental conditions is important for prioritising policies and interventions that aim to diminish the risks and improve the health of the population. With this purpose in mind, the EURO-HEALTHY project used a consistent approach to assess the impact of key environmental risk factors and urban environmental determinants on public health in European metropolitan areas. A number of environmental public health indicators, which are closely tied to the physical and built environment, were identified through stakeholder consultation; data were collected from six European metropolitan areas (Athens, Barcelona, Lisbon, London, Stockholm and Turin) covering the period 2000-2014, and a health impact assessment framework enabled the quantification of health effects (attributable deaths) associated with these indicators. The key environmental public health indicators were related to air pollution and certain urban environmental conditions (urban green spaces, road safety). The air pollution was generally the highest environmental public health risk; the associated number of deaths in Athens, Barcelona and London ranged between 800 and 2300 attributable deaths per year. The number of victims of road traffic accidents and the associated deaths were lowest in the most recent year compared with previous years. We also examined the positive impacts on health associated with urban green spaces by calculating reduced mortality impacts for populations residing in areas with greater green space coverage; results in Athens showed reductions of all-cause mortality of 26 per 100,000 inhabitants for populations with benefits of local greenspace. Based on our analysis, we discuss recommendations of potential interventions that could be implemented to reduce the environmental public health risks in the European metropolitan areas covered by this study.


Asunto(s)
Accidentes de Tránsito , Contaminación del Aire/análisis , Evaluación del Impacto en la Salud , Ruido , Ciudades , Salud Ambiental , Europa (Continente) , Evaluación del Impacto en la Salud/legislación & jurisprudencia , Humanos , Salud Pública
11.
J Aerosol Med ; 20(4): 519-29, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18158723

RESUMEN

Aerosol drugs are usually delivered to the lung by inhalation via the oral route, since aerosol deposition is much lower in the oral than in nasal airways. In the present study a practical, non-CFD-based, mechanistic model is developed, which permits an efficient calculation of deposition along the oral route with simple computational means. A simplified geometrical description of the mouth and throat region is used, based on a sequence of conducting ducts. The numerical model takes into account aerosol dynamics, which enables to express the impact on aerosol transport and deposition of the hygroscopic growth of water-soluble particles. Simulations are made for coarse particles in the range 1-17 microm, and the model predictions are found in good agreement with the available experimental data. The model predicts inertial impaction to be the dominant mechanism, and correctly reproduces the increase in the deposition with an increasing flow rate and particle diameter. Higher deposition is calculated in the oropharyngeal region than the laryngeal region, due to the significant flow direction change and constriction at the end of the oral cavity. According to the model, highly soluble particles may deposit up to 50% more than inert aerosols in the mouth-throat region. The proposed model will be useful for quick, practical calculations of deposition with a full account of aerosol dynamical processes.


Asunto(s)
Aerosoles , Boca/fisiología , Tamaño de la Partícula , Faringe/fisiología , Humanos , Modelos Teóricos , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA